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Abstract
Maize (Zea mays L.) is the third most important cereal crop after rice (Oryza sativa)

and wheat (Triticum aestivum). Salinity stress significantly affects vegetative biomass

and grain yield and, therefore, reduces the food and silage productivity of maize.

Selecting salt-tolerant genotypes is a cumbersome and time-consuming process that

requires meticulous phenotyping. To predict salt tolerance in maize, we estimated

breeding values for four biomass-related traits, including shoot length, shoot weight,

root length, and root weight under salt-stressed and controlled conditions. A five-fold

cross-validation method was used to select the best model among genomic best linear

unbiased prediction (GBLUP), ridge-regression BLUP (rrBLUP), extended GBLUP,

Bayesian Lasso, Bayesian ridge regression, BayesA, BayesB, and BayesC. Exam-

ination of the effect of different marker densities on prediction accuracy revealed

that a set of low-density single nucleotide polymorphisms obtained through filtering

based on a combination of analysis of variance and linkage disequilibrium provided

the best prediction accuracy for all the traits. The average prediction accuracy in

cross-validations ranged from 0.46 to 0.77 across the four derived traits. The GBLUP,

rrBLUP, and all Bayesian models except BayesB demonstrated comparable levels of

prediction accuracy that were superior to the other modeling approaches. These find-

ings provide a roadmap for the deployment and optimization of genomic selection in

breeding for salt tolerance in maize.

Abbreviations: ANOVA, analysis of variance; BL, Bayesian lasso; BLUP,
best linear unbiased prediction; BRR, Bayesian ridge regression; EGBLUP,
extended GBLUP; GBLUP, genomic best linear unbiased prediction; GS,
genomic selection; GWAS, genome-wide association study; LD, linkage
disequilibrium; RL, root length; RL_STI, root length salt tolerance index;
rrBLUP, ridge-regression BLUP; RW, root weight; RW_STI, root weight
salt tolerance index; SL, shoot length; SL_STI, shoot length salt tolerance
index; SNP, single nucleotide polymorphism; STI, salt tolerance index; SW,
shoot weight; SW_STI, shoot weight salt tolerance index; TRP, training
population; TSP, testing population.
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1 INTRODUCTION

Climate change projections suggest that environmental vari-
ables such as temperature, rainfall, humidity, and solar
radiation are expected to change beyond their normal histor-
ical limits (U.S. Global Change Research Program, 2017).
Fluctuations in these abiotic factors will cause enhanced
stress to crop plants and significantly threaten the global
food supply. Therefore, there is an urgency to find ways to
minimize the impact of climate change on crop production.
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Salinity is a major environmental stressor that affects a signif-
icant portion of farmlands worldwide. According to estimates,
424 million hectares of topsoil (0–30 cm) and 833 million
hectares of subsoil (30–100 cm) in 118 countries around
the world are affected by salinity (FAO, 2021). Soil salinity
is a dynamic problem affected by many climatic, edaphic,
and anthropogenic factors, including temperature, evapora-
tion, evapotranspiration, soil leaching, seawater intrusion, and
crop cultivation practices (Corwin, 2021). Efficient irriga-
tion systems and reduced water usage for crop cultivation in
salinity-prone regions may inadvertently lead to an escalation
of salt concentration in the soil profile (Aragüés et al., 2014).
Salinity adversely affects plant growth and development, and
most land plants grown in saline soils fail to achieve optimum
growth. High sodium ion buildup in the plant tissues damages
biological membranes and subcellular organelles (Davenport
et al., 2005; Quintero et al., 2007) and interferes with the
uptake and availability of other essential nutrient elements,
including calcium and potassium (El Bassiouny & Bekheta
et al., 2004; M. Hussain et al., 2013; Munns et al., 2006;
Sandhu & Kaundal, 2018). The toxic effects of sodium can
impair the photosynthetic machinery, resulting in reduced
yield and production.

Maize (Zea mays L.) is one of the leading cereals, with
1.2 billion metric tonnes of global production during 2021
(FAOStat, 2021). Maize is a multipurpose crop, and 12.8%,
56.3%, 0.7%, 4.7%, and 19.6% of global maize produce is
utilized for food, feed, seed, processing, and non-food uses,
respectively (Erenstein, 2022). Maize is moderately sensi-
tive to salinity stress (Chinnusamy et al., 2005; Farooq et al.,
2015; Maas et al., 1983; Sandhu et al., 2020), which signif-
icantly reduces plant height, leaf area, root elongation, root
anatomy, photosynthesis, stomatal conductance, and root–
shoot biomass (Ali Turan et al., 2009; Dikobe et al., 2021;
El Sayed & El Sayed, 2011; D. Hu et al., 2022; Zahra et al.,
2020). Decreased photosynthetic activity may adversely affect
the grain number per plant (Hiyane et al., 2010; Hütsch et al.,
2014; Jung et al., 2017) and grain weight (Barutcular et al.,
2005). Although both root and shoot growth are adversely
affected by salinity in maize, shoot-related traits experience
particularly severe penalties compared to root traits (Farooq
et al., 2015; Munns & Sharp, 1993; Shahzad et al., 2012).
The yield of maize grain and silage is estimated to decrease
by 50% when the soil electrical conductivity reaches 7 dS
m−1 and 8.6 dS m−1, respectively (Amacher et al., 2000).
While global maize production has followed an upward trend
(FAO Stat., 2021), rising demands for feed, silage, and ethanol
production may potentially expand maize cultivation onto
marginal/degraded lands, including those with high salinity.
Amid rapidly shrinking agricultural land (Brain et al., 2023),
expanding cultivation to areas with degraded soils may be
helpful for sustainable agriculture and food security.

The development of salt-tolerant cultivars offers an oppor-
tunity to sustain and increase maize yield in saline soils.

Core Ideas
∙ Genomic selection was evaluated for salt toler-

ance in maize to have a general idea of expected
prediction accuracy.

∙ Genomic best linear unbiased prediction
(GBLUP), ridge-regression BLUP, Bayesian
ridge regression, BayesA, and BayesB showed
similar performance for all the studied traits when
only trait associaterd markers were used.

∙ Bayesian models showed slightly higher prediction
accuracies when higher density of randondomaly
selected markers were used.

∙ A reduced marker set selected based on analy-
sis of variance + linkage disequilibrium showed
improved prediction accuracy in cross-validation.

Several studies have focused on understanding the biology
of salt tolerance in plants (Acharya et al., 2022; Hasan et al.,
2021; Hussain et al., 2021; Kaundal et al., 2022), and different
omics-based approaches have been proposed to improve salt
tolerance in food crops (Kumar et al., 2021; Sandhu et al.,
2020). Genomic selection (GS) has been successfully used
to sustain increased genetic gain in different plant species
(Lorenzana & Bernardo, 2009; Singh & Kaundal, 2023). Pre-
dicting the breeding value of untested genotypes can reduce
the need to test numerous genotypes in the field, ultimately
cutting phenotyping costs (Krchov & Bernardo, 2015). Phe-
notyping for salinity stress tolerance in the field is tedious and
time-consuming. Special plots are required for such phenotyp-
ing where the salinity of a desired level is attained by applying
a saline solution. Maintaining a constant level of salinity in
such plots for longer periods is very challenging due to several
factors affecting soil salinity, including rainfall and evapo-
transpiration. Therefore, phenotyping of a large number of
field-grown genotypes in a breeding program is a costly, time-
consuming, and laborious endeavor. Given the complexity
and labor-intensive nature of phenotyping for salinity stress
tolerance, GS is an ideal approach for genetically improv-
ing this trait. The variability of soil salinity makes large-scale
field phenotyping logistically difficult, thereby increasing the
practicality of phenotyping a carefully curated selection of
lines through GS.

Identifying an appropriate model is essential in proceeding
with the GS approach for trait improvement. In GS, genomic
estimated breeding values (GEBVs) are obtained for the
“genotyped only” or testing population (TSP) using a model
trained on genotypic and phenotypic data of the training
population (TRP). GS studies suffer from the complexity of
many markers (P) and small population size (n) scenarios.
A situation of P > > n with correlated predictors makes
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ordinary least squares unfit to estimate marker effects. In
such cases, alternative methods have been proposed to
address this challenge effectively (Lande & Thompson, 1990;
Whittaker et al., 1995). Statistical models employed for
tackling the intricacies of GS can broadly be grouped into
shrinkage models, for example, ridge-regression best linear
unbiased prediction (rrBLUP; Whittaker et al., 2000), Lasso
(Usai et al., 2009), Elastic Net (Ogutu et al., 2012); variable
selection models, for example, BayesA, BayesB, and BayesC
(Habier et al., 2011; Meuwissen et al., 2001); dimension
reduction models, for example, principle component analysis
(PCA) and partial least square (Macciotta et al., 2010; Solberg
et al., 2009); and kernel models, for example, reproducing
kernel Hilbert spaces (RKHS) regression and support vector
machine (Gianola & Van Kaam, 2008; Ogutu et al., 2012).
Genomic BLUP (GBLUP) is one of the most widely imple-
mented GS models employing a marker-based relationship
matrix to predict GEBVs (VanRaden, 2008). In contrast to
GBLUP, which relies on kinship-based predictions, rrBLUP
follows a shrinkage-based methodology to estimate marker
effects (Meuwissen et al., 2001; Whittaker et al., 2000). This
approach allows greater numerical stability in linear regres-
sion, particularly under P > > n scenarios (Hoerl & Kennard,
2000). Due to high computational cost, most GS methods
use additive and dominant effects but ignore epistasis, an
essential component in explaining complex trait architecture.
Extended GBLUP (EGBLUP) reduces computational load
by adding a marker-based epistatic relationship matrix to
GBLUP (Jiang & Reif, 2015). Bayesian methods are also
widely used for variable selection and shrinkage of estimates.
The prior densities of marker effects determine the inclusion
of variable selection and the extent and type of shrinkage in
the Bayesian models for GS (de los Campos et al., 2013).
The Bayesian ridge regression (BRR) approach is similar to
rrBLUP but uses a Bayesian resolution and a Gaussian prior
with mean and variance as hyperparameters. Due to homoge-
nous shrinkage performed by rrBLUP and BRR, these models
are not suitable for scenarios where few markers are unlinked
to a quantitative trait locus (QTL). Thick-tailed priors are
used to resolve this issue where the scaled-t density is used in
BayesA (Meuwissen et al., 2001), and a double-exponential
prior is used in Bayesian Lasso (BL; Park & Casella, 2008).
BayesB (Meuwissen et al., 2001) uses scaled-t density, and
BayesC (Habier et al., 2011) uses normal density as the
slab.

Here, we performed genomic prediction of salinity stress
tolerance in maize to understand the feasibility of using this
tool to improve this complex trait. The study compares dif-
ferent GS models, marker densities, and marker selection
approaches to provide an efficient approach that is comple-
mentary to field-based salinity stress tolerance screenings in
maize.

2 MATERIAL AND METHODS

2.1 Phenotypic dataset and growth
conditions

The dataset used in this study consists of 399 inbred lines from
a diversity panel (Mazaheri et al., 2019) that were evaluated in
a greenhouse lysimeter system at the US Salinity Laboratory,
Riverside, CA. The detailed procedure of phenotyping and
data analysis is described in detail elsewhere (Sandhu et al.,
2020). In brief, the inbred lines were evaluated in lysimeter
sand tanks of size 120 cm (L)× 60 cm (W)× 50 cm (D). Seeds
were germinated and grown using a half-strength Hoagland
solution with essential macro and micronutrients. Eighteen
days after sowing, plants were treated with saline solution
(ECw = 16 dS m−1) in a modified half-strength Hoagland
solution base with a ratio of (Ca = 1.25Mg = 0.25Na) among
cations. Another set of plants was treated with half-strength
Hoagland solution during this period and considered as con-
trol. Plants were harvested 2 weeks after the salt initiation
treatment, and data were recorded for shoot length (SL), shoot
weight (SW), root length (RL), and root weight (RW) on
both the control and treatment plants, thus resulting in eight
primary traits. A salt tolerance index (STI) was calculated
for each trait by dividing the phenotypic value of a geno-
type in salt-treated tanks by the phenotypic value in control
tanks. BLUPs were calculated for each trait and four differ-
ent salt tolerance indices, including the SL STI (SL_STI),
the SW STI (SW_STI), the RL STI (RW_STI), and the RW
STI (RW_STI). All eight primary traits and four derived traits
were predicted using GS. Out of a total of 399 inbred lines
phenotyped, 358 were used for GS analysis.

2.2 Genotypic data and its processing

Genome-wide single nucleotide polymorphisms (SNPs) used
in this study were derived from an RNA-seq analysis of a
panel of 942 diverse inbred lines that provided 899,784 SNPs
(Mazaheri et al., 2019). SNPs with a minor allele frequency
less than 0.05 and missing values of more than 20% and inbred
lines with more than 80% missing values were removed using
the R package snpReady (Granato et al., 2018). This process
resulted in 444,235 SNPs and 358 inbred lines for down-
stream analysis. Different marker sets with varying marker
densities (400K, 300K, 200K, 100K, 50K, 25K, and 10K)
were derived by random selection (10 iterations) of SNPs and
by testing the association of each marker with a trait using
one-way analysis of variance (ANOVA) analysis of linear
regression of predictor on the response variable. The response
variables were normally distributed (data not shown). In
this ANOVA method, the markers showing significant
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association with trait variation (p < 0.05) were retained for
GEBV prediction. For the markers selected by ANOVA, link-
age disequilibrium (LD)-based pruning was done to filter
out other markers that are in LD (r2 > 0.80) with any other
markers.

2.3 Effect of marker density

To preliminarily investigate the effect of different marker den-
sities, the GBLUP model with five-fold cross-validation was
implemented using the “bwgs.cv” function from the BWGS
package in R programming language (Charmet et al., 2020).
Random selection of markers was done 10 times, and each
time the traits were analyzed with 10 iterations of cross-
validation. The predictive ability (PA) for all the folds in
each iteration was averaged and plotted for comparison. The
PA was defined as the value of Pearson’s correlation coeffi-
cient between BLUPs of phenotypic values and the GEBV of
predicted individuals.

2.4 Model selection and heritability
estimation

We studied GBLUP, EGBLUP, rrBLUP, BRR, BL, BayesA,
BayesB, BayesC, and RKHS models for five marker densi-
ties (100K, 200K, 300K, 400K, and ANOVA + LD) under
five-fold cross-validation. The SNPs were sampled 10 times,
and each set of SNPs was analyzed for 10 iterations of cross-
validation, resulting in a total of 100 iterations. For Bayesian
models and RKHS, the BGLR library of R was used inside
the BWGS package (Pérez & De Los Campos, 2014). The PA
was calculated as defined in Section 2.3. The best-performing
model was used for all further analyses. The standard GBLUP
model with a focus on additive genetic effects can be given as
follows:

𝐲 = 𝟏
𝒏
μ + 𝐙𝐠 + 𝐞. (1)

Here, y is an n-dimensional vector of phenotypic records
(n is the number of genotypes), 𝟏𝐧 is an n-dimensional vec-
tor of ones, μ is the population mean, 𝐙 is the design matrix
linking phenotypic values to the genotypic values, 𝐠 is an
n-dimensional vector of additive genotypic value, and 𝐞 is
a vector for residual terms. The model assumes 𝐠 and 𝐞
as random parameters with 𝐠 ∼ 𝑁(0, 𝐆σ2

𝑔
), and 𝐞 ∼

𝑁(0, 𝐈σ2
𝑒
). The G depicts the genomic relationship matrix

(n × n) among all individuals. Unlike GBLUP, which utilizes
marker derived relationship matrix for predictions, rrBLUP
uses marker effects to estimate GEBV. The basic rrBLUP
model is given below. Here, 𝐲 and 𝐞 are as mentioned in

Equation (1), and 𝐖, 𝐆 and U are the design matrix, the geno-
type matrix of SNP markers, and vector of marker effects,
respectively, with 𝐔 ∼ 𝑁(0, 𝐈σ2

𝑢
).

𝐲 =𝐖𝐆𝐔 + 𝐞. (2)

Whereas GBLUP considers only additive genetic effects,
EGBLUP considers additive × additive epistasis in addition
to the additive genetic effect with the formula:

𝐲 = 𝟏
𝒏
μ + 𝐠𝟏 + 𝐠𝟐 + 𝐞, (3)

where 𝐲, 1𝑛, μ, and 𝑒 are the same as described in Equa-
tion (1). The 𝑔1 and 𝑔2 are an n-dimensional vector of additive
genotypic values and an n-dimensional vector of additive ×
additive epistatic genotypic values, respectively. The model
assumes that 𝐠𝟏 ∼ 𝑁(0, 𝐆σ21) and 𝐠𝟐 ∼ 𝑁(0, 𝐇σ22), where
H is an epistatic relationship matrix obtained as the Hadamard
product of the additive relationship matrix (i.e., G) by itself.
Another approach for modeling epistasis for GS is using
RKHS regression (Gianola & Van Kaam, 2008; Gianola et al.,
2006). An RKHS model is described in Equation (4) with the
same notations as in Equation (1) and (3).

𝐲 = 𝟏𝐧 μ + 𝐠 + 𝐞. (4)

The model assumes that 𝐞 ∼ 𝑁(0, 𝐈σ2
𝑒
), and 𝐠 ∼

𝑁(0, 𝐊σ2
𝑔
), where 𝐊 = (𝑘(𝑥𝑖, 𝑥𝑗)) depicts a kernel matrix

(n × n) whose entries are functions of the marker profiles of
genotype 𝑖 and 𝑗. Bayesian methods of GS may lead to higher
prediction accuracy (PA) by incorporating prior information
and capturing complex relationships. The basic equation is
represented as

𝑦𝑖 = η𝑖 + 𝑒𝑖. (5)

Here, (𝑖 = 1, .., 𝑛), and η is a linear predictor which
represents a conditional expectation function as

η = 1μ +
𝐽∑

𝑗 = 1
𝐗𝐣β𝑗 +

𝐿∑

𝑙 = 1
𝐮𝐥, (6)

where μ is the intercept, 𝐗𝑗 are design matrices for predic-
tors, 𝛃𝑗 are vectors of the effects associated to the columns
of 𝐗𝑗 , and 𝐮𝑙 are vectors of random effects. Based on the
above criteria, a conditional distribution equation of the data is
defined, and prior densities are assigned to different unknown
coefficients in the equation. Based on the choice of prior
densities of the regression coefficients (𝛃𝑗), the models are
differentiated into BRR, BL, BayesA, BayesB, and BayesC.
The Gaussian prior is used in BRR, shrinking all the effects
to a similar extent (Gianola, 2013). The Laplace prior is used
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in the BL (Park & Casella, 2008), whereas the scaled-t density
prior is used in BayesA (Meuwissen et al., 2001). For BayesB
and BayesC, two different finite mixture priors are used. In
BayesB, these are a mixture of a point of mass at zero and a
scaled-t slab (Meuwissen et al., 2001), and in BayesC, they
are a mixture of a point of mass at zero and a Gaussian slab
(Habier et al., 2011).

Narrow-sense heritability (ℎ2) was estimated for eight pri-
mary traits and four derived traits using ASReml-R software
(Gilmour et al., 2021). Variance components were estimated
by using model (1) in ASReml. The additive relationship
matrix was calculated using SNPs by the “A.mat” function of
the rrBLUP package in R, and narrow-sense heritability was
calculated as follows:

ℎ2 =
σ2g
σ2
𝑝

,

where σ2
𝑔

is additive genetic variance, and σ2
𝑝

is the
phenotypic variance.

3 RESULTS

3.1 Low-density markers selected using the
ANOVA + LD approach showed the best
prediction accuracy

Random selection of markers resulted in very low PA for all
four traits under GBLUP, and changing the marker density did
not improve PA (Figure 1). PA significantly improved after
selecting markers through ANOVA. The numerical values of
PAs for markers selected through ANOVA and ANOVA+LD
are given in supplementary data (Table S2). The distribution
of these markers across the studied traits is displayed in Venn
diagrams (Figure S1). The chromosome-wise distribution of
markers is presented in the supplementary data (Figure S2).
The ANOVA + LD approach showed the highest average PA
among all maker selection criteria. For further analysis, mark-
ers selected through ANOVA + LD approach were used. The
response of different models under different densities of ran-
domly selected markers (100K, 200K, 300K, and 400K) is
shown in Figure 2. All other models performed better than
GBLUP for SL_STI and RL_STI. BayesB showed increasing
PA upon increasing the marker densities for SL_STI, RL_STI,
and RW_STI. Interestingly, BRR gave negative PA values for
SW_STI when 300K marker sets were used. RKHS showed
significantly lower PA than EGBLUP for SL_STI, RL_STI,
and SW_STI and higher PA than EGBLUP for RW_STI
for all the four marker densities. BayesC and BRR gave an
increasing trend of PAs upon increasing marker densities for
RL_STI.

3.2 Model selection

Various GS models were fitted on four derived salinity indices
to identify the best model. The analysis of a set of 358
inbred lines and markers selected through the ANOVA + LD
approach showed that GBLUP, EGBLUP, and rrBLUP and all
Bayesian models performed similarly (Figure 3). The rrBLUP
model performed slightly better than GBLUP for RW_SI. The
differences between different PA models were practically neg-
ligible for all the traits (Figure 3). All Bayesian models, with
the exception of BayesB, were on par with GBLUP for all four
traits. BayesB showed the lowest average PA values for all the
traits, followed by EGBLUP (Figure 3).

3.3 Traits under the control treatment
showed better prediction accuracy than those
under the salinity treatment

GBLUP was selected to fit the GS model on eight primary
traits: SL and SW, RL, and RW under normal and saline con-
ditions. The primary traits were evaluated to compare the
control versus the salt treatment. The average PA of GBLUP
for these traits varied from 0.59 to 0.73 (Figure 4). PA for SL,
RL, and RW was slightly higher for the control than for the
salt treatment (Figure 4) and the control and treatment for SW.
Among the salt indices, SL_STI and RL_STI showed consid-
erably higher PA than SW_STI and RW_STI, and the average
PA for SW_STI was below 0.50 (Figure 4). The exact values
of average PA for each trait with their standard deviations are
given in Table S1.

3.4 Heritability was positively correlated
with PA

Narrow-sense heritability ranged between 0.35 and 0.54 for
the eight primary traits and between 0.31 and 0.46 for the four
derived traits (Table 1). Salt tolerance indices of all four traits
showed lower heritability than their respective primary (both
control and salt treatments) traits. A significant positive corre-
lation between heritability and PA (p = 0.05) was found with
an R2 value of 0.43 (Figure S3).

4 DISCUSSION

GS has been implemented in several cereal breeding programs
for predicting various traits related to biotic and abiotic stress
tolerance (Cao et al., 2021; Dias et al., 2018; dos Santos et al.,
2016; Lorenz et al., 2012; Shikha et al., 2017). GS on biotic
stress tolerance traits in maize has shown PA as high as 0.706
for northern corn leaf blight resistance (Lorenz et al., 2012),

 19403372, 2023, 4, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20385 by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 13 SINGH ET AL.The Plant Genome

F I G U R E 1 Effect of the number of markers on cross-validation predictive ability of the genomic best linear unbiased prediction (GBLUP)
model for salt indices of different traits. RL, root length; RW, root weight; SL, shoot length; STI, salt tolerance index; SW, shoot weight.

F I G U R E 2 Effect of the number of markers on cross-validation predictive ability of different models for salt tolerance indices of different
traits. RL, root length; RW, root weight; SL, shoot length; STI, salt tolerance index; SW, shoot weight.
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F I G U R E 3 Predictive abilities of four derived traits for different genomic selection models. GBLUP, genomic best linear unbiased prediction;
EGBLUP, extended EGBLUP; rrBLUP, ridge regression BLUP; BRR, Bayesian ridge regression; BA, BayesA; BB, BayesB; BC, BayesC; BL,
Bayesian Lasso; RKHS, reproducing kernel Hillbert spaces; RL, root length; RW, root weight; SL, shoot length; STI, salt tolerance index; SW, shoot
weight.

F I G U R E 4 Predictive ability of GBLUP for different traits in
fivefold cross-validation. RL, root length; RW, root weight; SL, shoot
length; STI, salt tolerance index; SW, shoot weight.

0.878 for ear rot resistance (dos Santos et al., 2016), and 0.87
for tar spot resistance (Cao et al., 2021). GS has been success-
fully implemented for the improvement of drought tolerance
in maize (Dias et al., 2018; Shikha et al., 2017). Response
to GS varies among crop species and depends on the genetic

architecture of the trait (Morgante et al., 2018), marker density
(Q. Wang et al., 2017), size of the TRP (A. Zhang et al., 2017),
and level of relatedness between the TRP and TSP (Fraslin
et al., 2022; Lorenz et al., 2015). Therefore, it is very impor-
tant to investigate the potential level of PA for the target trait
before deploying GS on a larger scale.

The number of markers used for the analysis is an impor-
tant and widely studied aspect of GS. Very low PA values
were observed in cross-validation with a higher density of
markers in our study (Figure 2). However, a substantial gain
in the PA was observed upon selecting markers based on
linear regression of each marker with trait values followed
by ANOVA analysis, and a further increase in the PA was
observed after trimming the markers based on LD crite-
ria (ANOVA + LD). Being fundamentally a regression of
marker data to trait variation, this ANOVA + LD method
is partly similar to genome-wide association study (GWAS)
conducted without consideration of population structure and
adjustment of p-values for multiple comparisons. GWAS-
based marker prioritization has been explored in previous
studies (Ling et al., 2022; Sehgal et al., 2020; Veerkamp
et al., 2016). One study reported a decrease in PA for protein
yield in Holstein-Friesian bulls (Veerkamp et al., 2016), while
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another study reported no increase in PA upon implementing
marker selection strategies (Ober et al., 2012). In a simulation
study, increased PA has been reported upon filtering markers
based on FST, a measure of allele frequency variation among
subpopulations (Chang et al., 2018). In another study focused
on trait-associated markers in GS (Sehgal et al., 2020),
up to 10% of PA was observed for grain yield in wheat
(Triticum aestivum) after using loci identified by GWAS
as fixed effects in the model (Sehgal et al., 2020). Similar
results were reported in rice (Oryza sativa; Anilkumar et al.,
2023), where PA reduced significantly after dropping GWAS-
detected markers (Anilkumar et al., 2023). These reports
suggest the importance of marker prioritization for GS. The
ANOVA + LD approach used in our study selects markers
based on the data from the training population alone, so it
would be interesting to validate this approach on untested
genotypes. The GS models showed different patterns for PA
under higher densities of markers in comparison to when
ANOVA + LD method was used. This observation suggests
a need for further investigation into the behavior of GS mod-
els with respect to the trait under study and the marker set
used. The SNP data used in this study were exclusively from
the expressed regions of the genome. Including SNPs from
non-genic regions, as reported earlier (Liang et al., 2020; Tan
et al., 2017), may improve the PA, considering that non-genic
regions of the genome have critical regulatory functions (Song
et al., 2021).

When implementing GS for trait improvement, selecting a
predictive model suitable for a specific crop-trait scenario is
important. Different GS models have advantages and disad-
vantages (Crossa et al., 2017), and the genetic architecture
of the target trait partially determines their effectiveness
(Daetwyler et al., 2010). Genetic architecture is defined by
the number of QTL controlling a trait, their effect sizes, and
their intra-locus and inter-loci interactions. Model assump-
tions about genetic architecture as well as the treatment of
marker effects within models can influence the PA of GS
(J. Wang et al., 2018). A GWAS on the population evalu-
ated in this study previously reported that all the identified
salt indices-associated SNPs had minor effects with R2 val-
ues less than 0.13 (Sandhu et al., 2020). This finding indicates
the complex genetic architecture of salt tolerance in maize,
which suggests the suitability of GS for improving these traits.
The lack of significant differences between Bayesian models,
rrBLUP, and GBLUP is consistent with the results previously
reported in predicting complex traits (Daetwyler et al., 2010;
Endelman, 2011; Heslot et al., 2012; Lorenz et al., 2012; Mer-
rick & Carter, 2021; Rolling et al., 2020). The similar PA
for GBLUP and rrBLUP for all the studied traits may be due
to their theoretical equivalence (Goddard, 2009; Hayes et al.,
2009), and their similar performance has been reported previ-
ously (Jacquin et al., 2016; Zhu et al., 2021). A slightly higher
PA of rrBLUP in comparison to GBLUP for RW_STI may
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be attributed to the method of calculation of the genetic rela-
tionship matrix in GBLUP (Endelman, 2011). The EGBLUP
model performed poorer than most of the models for all four
salt tolerance indices. The lower PA of EGBLUP suggests
either the low importance of epistasis for explaining these
traits or the inability of EGBLUP to model the epistatic effects
appropriately. Some studies reported an increase (Z. Hu et al.,
2011; Jiang et al., 2018; Martini et al., 2017; Miller et al.,
2023; Vojgani et al., 2021), while others reported a decrease
(Jiang & Reif, 2015; Lorenzana & Bernardo, 2009) in PA
upon modeling epistasis, indicating trait specific response.
The difference in PA between rrBLUP and EGBLUP for
RW_STI was 0.05, suggesting that these models would likely
provide similar levels of realized genetic gain when applied.

BayesB model assumes that most markers do not affect the
trait and show higher PA when a few QTLs have a large effect
size (Meuwissen et al., 2001). None of the SNPs in the previ-
ously reported GWAS study were found to have major effects
on the traits tested (Sandhu et al., 2020), which may explain
the relatively poor performance of BayesB. Another probable
reason for the lower PAs of BayesB may be the lower heritabil-
ity of the studied traits, as BayesB assumes a more realistic
distribution in marker effect for high heritability traits (Zhu
et al., 2021). Higher PAs have been reported for traits with
higher heritability (Bolormaa et al., 2013; Daetwyler et al.,
2010). Therefore, one of the probable explanations for the
low PA of SW_STI and RW_STI, compared to SL_STI and
RL_STI may be their lower heritability.

GS may be used for narrowing down selection candidates
from a large breeding population to a smaller subset for field
evaluation, thereby improving the cost-efficiency and feasi-
bility of breeding for salinity tolerance. Higher genetic gains
have been reported in maize for abiotic stress using GS over
phenotypic selection (Vivek et al., 2017). Rapid cycle GS
(RCGS) has recently been used in maize to improve drought
and waterlogging tolerance with a substantial genetic gain
and without any yield penalty under optimum conditions (Das
et al., 2020). Several studies have reported a minimal loss of
genetic diversity in the advanced breeding cycles under RCGS
schemes (Das et al., 2020; Dreisigacker et al., 2023; Zhang
et al., 2017). Implementing RCGS for salinity stress toler-
ance in maize would be helpful to increase genetic gains for
this trait. The next critical step following the results presented
herein is to empirically measure the realized gain from the
selection when applying GS to improve salinity tolerance in
maize.

5 CONCLUSION

Several research programs focused on genetic, physiolog-
ical, molecular, and genomic aspects of salt tolerance in

crops have expanded our mechanistic understanding of this
complex trait. However, these efforts have not been fully
translated into applied breeding programs to improve salt
tolerance in maize. With progressively reduced genotyp-
ing costs, phenotyping has become a rate-limiting step in
crop improvement, especially for biotic and abiotic stress-
related traits influenced by the environment. Selecting mark-
ers based on ANOVA and LD criteria may be useful for
improving PA and the cost-effectiveness of genotyping. The
present study concludes that GS is a promising approach
for developing salt-tolerant maize cultivars and provides a
roadmap for implementing GS in salinity-tolerance breeding
programs.
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