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Abstract

RNA-binding proteins (RBPs) are key players in regulating cell fate and essential developmental processes. Systematic profiling of the
RNA-binding proteome (RBPome) is thus indispensable for researchers aiming to understand the mechanisms of post-
transcriptional gene regulation. RBPome identification methods developed in humans, mice, and bacteria have successfully identi-
fied RBPomes in these organisms. However, the biochemical and genetic complexities of plant tissues have greatly hindered the ef-
fectiveness of these methods in plants. Moreover, plant RBPs have been predominantly discovered through oligo d(T) based affinity
purification (RNA-interactome capture). Since polyadenylated RNA only accounts for less than 5% of the total RNA population in eu-
karyotic cells, there is a pressing need to develop a comprehensive, yet unbiased, method to capture the full spectrum of RBPs in
plants. Here, we describe a detailed protocol of Plant Phase Extraction (PPE), a recently developed method to identify RBPs in
Arabidopsis (Zhang Y, Xu Y, Skaggs TH, et al. Plant phase extraction: a method for enhanced discovery of the RNA-binding proteome
and its dynamics in plants. Plant Cell 2023; 35: 2750–72.) [1]. The PPE method enables the efficient enrichment of both poly(A) and
non-poly(A) RBPs from various tissues quickly and reproducibly. Most importantly, PPE allows for unveiling dynamic RBP–RNA inter-
actions under various abiotic and biotic stress conditions and during different plant developmental stages. This provides a much
broader and more accurate understanding of plant RBPs, marking a significant advancement in plant molecular biology.
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Introduction
RNA-binding proteins (RBPs) are integral to virtually every aspect
of RNA metabolism, from RNA maturation to degradation, modi-
fication, transport, and translation [2, 3]. Over the decades, stud-
ies have implicated that the malfunction of RBPs leads to
neurodegenerative diseases, cancer, and metabolic disorders in
humans [4–10]. In plants, defective RBPs have been linked to
delayed flowering time, impaired ovule development, abnormal
circadian rhythms, and altered stress/immune responses [11–21].
While it is crucial to understand how each RBP regulates develop-
mental processes and responses to environmental cues, compre-
hensive identification of RBPs and understanding their
interaction with RNA is equally, if not more, important. Such an
approach will expand the current RBP repertoire and pave the
way for a better understanding of RBP functions.

Traditionally, RBPs were predicted based on the sequence ho-
mology of conserved RNA-binding domains (RBDs) across species.
However, proteins lacking classical RBDs, such as thymidylate
synthase, aconitase, and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH), have been shown to bind RNAs [22–24], suggesting

that computational predictions may have resulted in significant

underestimation of the actual number of RBPs. In response to

this, RNA interactome capture (RIC), a game-changing method

based on UV-crosslinking and oligo(dT) selection, was developed

to systematically capture the RNA-binding proteome (RBPome)

associated with polyadenylated (poly(A)) RNAs in the cells of

humans (1914 RBPs), mice (1393 RBPs), yeast (1273 RBPs),

Drosophila (777 RBPs), and nematodes (594 RBPs) [25–34]. RIC was

subsequently improved and applied to Arabidopsis etiolated

seedlings, mesophyll protoplasts, leaves, root cell cultures, and

seeds [35–40], leading to the discovery of 2782 RBPs [40, 41].
Despite its breakthroughs, RIC presents a notable limitation: it

exhibits a strong bias toward RBPs that bind poly(A) RNAs. Since

poly(A) RNAs/mRNA only represents a tiny fraction of total RNA

in eukaryotic cells (<5%), RBPs interacting with the vast majority

of non-poly(A) RNAs are very likely missing from RIC. Recently,

an alternative strategy using phase separation/extraction has

been introduced as a promising solution to this bias issue. This

technique recovers RBPs, solely based on their physicochemical

properties when in conjunction with RNAs after UV-crosslinking
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[42–44]. In this method, the crosslinked RBP–RNA adducts remain
in the insoluble interphase, enabling them to be separated from
the free RNA in the aqueous phase and proteins in the organic
phase post-acid guanidinium thiocyanate–phenol (Trizol re-
agent)–chloroform phase extraction. Notably, this method ena-
bles the identification of RBPs irrespective of their RNA type,
unveiling hundreds of new ones that likely interact with non-
poly(A) RNAs in human cell lines, mouse brains, and bacteria
[42–44]. However, when applied to Arabidopsis, this method en-
countered challenges, likely attributed to the complex nature of
plant tissues, and resulted in less-than-optimal outcomes [45].

Recently, we refined the phase extraction approach and devel-
oped Plant Phase Extraction (PPE), a method specifically designed
for the enrichment of RBPs in Arabidopsis. This method retains the
core concept of phase extraction employed in other organisms
while introducing customized adaptations for handling complex
plant tissue samples [1]. We incorporated crucial steps such as
lysis, clearing, and multiple rounds of phase extraction to elimi-
nate non-RBP contaminants. A notable example is histone H4,
which was mistakenly identified as a potential RBP in a previous
study that employed phase extraction without customizing the
technique to the unique characteristics of plant tissues [45]. This
strategy enhanced the signal-to-noise ratio, significantly improving
the method’s efficiency. We successfully uncovered 2517 RBPs
from Arabidopsis leaf and root tissues under normal and saline
conditions, including tissue-specific and salt-responsive RBPs.
Nearly half of the discovered RBPs are novel and likely non-ploy(A)
RBPs. Here, we present a detailed PPE protocol to aid researchers in
their pursuit of enriching RBPs in plant species.

Materials and methods
Reagents, antibodies, and equipment
Murashige and Skoog (MS) basal medium powder (RPI, Catalog
number: M10200-50.0)
Sucrose (Sigma-Aldrich, Catalog number: S0389-5KG)
Agar (RPI, Catalog number: A20400-1000.0)
Chlorox (The Chlorox Company, Catalog number: USA001067)
1 M Tris–HCl buffer, pH 7.5 (Thermo Fisher Scientific, Catalog
number: 15567027)
8 M Lithium chloride solution (Sigma-Aldrich, Catalog number:
L7026-100ML)
Lithium dodecyl sulfate (Sigma-Aldrich, Catalog number: L4632-
50G)
Sodium dodecyl sulfate (Sigma-Aldrich, Catalog number: L3771-
1KG)
IGEPAL CA630 (Sigma-Aldrich, Catalog number: I8896-100ML)
Polyvinylpyrrolidone 40 (Sigma-Aldrich, Catalog number: PVP40-
100G)
DTT (Sigma-Aldrich, Catalog number: D0632-10G)
EDTA-free protease inhibitor cocktail (Sigma-Aldrich, Catalog
number: 11836170001)
Ribonucleoside Vanadyl Complex (NEB, Catalog number: S1402S)
Trizol (Thermo Fisher Scientific, Catalog number: 15596018)
Chloroform (Thermo Fisher Scientific, Catalog number: 14-650-
209)
DNase I (NEB, Catalog number: M0303L)
RiboLock RNase inhibitor (Thermo Fisher Scientific, Catalog num-
ber: FEREO0381)
Glycogen (Thermo Fisher Scientific, Catalog number: FERE0551)
Nuclease-free water (Thermo Fisher Scientific, Catalog number:
AM9938)

2’-propanol (Thermo Fisher Scientific, Catalog number: 041463-

K7)
Ethanol (Decon Labs, Catalog number: 2716)
Sodium chloride (Sigma-Aldrich, Catalog number: S3014-5KG)
Anti-AGO1 antibody (RRID: AB_2224930)
Anti-Histone H3 (RRID: AB_10750790)
Anti-Histone H4 (RRID: AB_296888)
Anti-HLP1 (gift from Dr. Xiaofeng Cao, Institute of Genetics and

Developmental Biology, China)
Anti-Fib1/2 (gift from Dr. Xiaofeng Cao, Institute of Genetics and

Developmental Biology, China)
Hoefer UVC500 Crosslinker (Hoefer, Inc.)
Gel loading tips (Genesee, Catalog number: 24-113)

Buffer recipes

1. Lysis buffer: 20 mM Tris–Cl, pH 7.5, 0.5 M LiCl, 0.5% LiDS,

0.4% IGEPAL CA630, 2.5% polyvinylpyrrolidone 40, 5 mM

DTT, 10 mM Ribonucleoside Vanadyl Complex, 1.5� Roche

EDTA-free protease inhibitor
2. Low SDS buffer: 50 mM Tris–Cl, pH 7.5, 1 mM EDTA, and

0.1% SDS
3. High SDS buffer: 50 mM Tris–Cl, pH 7.5, 1 mM EDTA, and

0.5% SDS

Plant materials
Wild-type Arabidopsis thaliana (Columbia-0) was used.

1. Seeds are surface sterilized by soaking in 50% bleach

(Clorox) for 5 min and rinsed with sterilized water four times

to remove the bleach.
2. Seeds are then stratified at 4�C for 3 days, sown on the MS

(pH 5.8) medium containing 1% (v/w) sucrose and 0.8% (w/v)

agar in two rows, and grown at 23�C under long-day condi-

tions for 12 days with a light intensity of 120 mmol/m2 (bulb:

Philips Master TL5 HO 54W/840 SLV/40).
Note: Plates are placed vertically in the growth chamber to

facilitate the transfer of seedlings and the separate collec-

tion of roots and leaves.

UV-crosslinking of Arabidopsis tissues

1. Leaves and roots from Arabidopsis are collected and trans-

ferred separately to new 150 mm Petri dishes containing ice-

cold liquid MS medium (pH 5.8), respectively.
Note: Plant tissues and the Petri dishes should be kept in a

pre-chilled buffer and on ice, respectively, to avoid degrada-

tion of protein and RNA caused by heat during the whole

UV-crosslinking process.
2. Leaves are irradiated twice on the adaxial side and once on

the abaxial side at 400 mJ/cm2 in the Hoefer UVC500

Crosslinker (254 nm wavelength) with a 1-min interval be-

tween each crosslinking. Roots are crosslinked three times

without flipping using the same UV dosage. Non-

crosslinking control samples (noCL) are soaked in ice-cold

liquid MS for approximately the same time as the cross-

linked samples (CL).
Notes: Leaf tissue, which harbors pigments such as chloro-

phyll, is more resistant to UV light in comparison to root tis-

sue. Therefore, root tissue could require fewer cross-linking

rounds or a lower UV intensity or duration than leaf tissue.

However, our initial study maintained identical UV-

crosslinking conditions for both tissues. This was to ensure
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a standardized approach that would facilitate direct com-

parisons between the two tissue types.
3. Once the crosslinking is done, noCL and CL tissues are

rinsed three times using ice-cold Tris-Cl buffer (20 mM, pH

7.5) and quickly dried with layers of paper towel. The sam-

ples can be either snap-frozen in liquid nitrogen, stored at

�80�C, or processed directly.
Notes: In our case, the samples were soaked in MS buffer

during UV-crosslinking, therefore, we used higher UV inten-

sity (400 mJ/cm2) to counteract the negative effect on UV

penetration caused by the liquid. Lower UV intensity can be

applied in other studies where samples are crosslinked di-

rectly on ice without being soaked in a buffer [35, 36, 39].

Always remember that the optimal UV-crosslinking condi-

tions should be carefully evaluated by monitoring the recov-

ery of RBP and/or RNAs.

PPE procedures
Notes: The overview scheme of the PPE protocol is shown in Fig. 1.

A five-round phase extraction, in our case, was ideal for removing

non-RBP contaminants histone H3 and H4. However, we strongly

recommend a pre-determination of the optimal number of rounds

of PPE if PPE is practiced in different tissues or other species. The

following procedures are carried out at 4�C unless specified.

1. Grind the leaf and root tissues into fine powder in liquid ni-

trogen using a mortar and pestle.
2. Resuspend the powder with lysis buffer (Two volumes of

lysis buffer per gram of powder. ‘In our study, 4 and 2 ml of

lysis buffer were added into 2 g of powdered leaf tissue and

1 g of powdered root tissue, respectively’). Homogenize the

cell suspension by rotating the tubes at 4�C for 30 minutes.
Notes: From experience, 1 g of powdered tissue is sufficient

for mass spectrometry analyses. We recommend starting

from less tissue samples (0.2–0.5 g) for immunoblot analy-

sis to test whether this method works.
3. Spin down tissue debris at 10 000 g for 15 min. Transfer the

supernatant to a new tube and centrifuge at 10 000 g for

15 min. Transfer the cleared supernatant to a 50 ml tube.

Save 200 ml of lysate as input for the following silver stain-

ing and immunoblot analysis.

Note: To minimize non-RBP contamination, it’s critical to
lyse and remove the cell debris by centrifugation at this
step.

4. Mix the rest (�4 ml from leaf and 2 ml from root samples)
with Trizol (20 ml for leaf and 10 ml for root samples), vor-
tex vigorously for 15 s, and let sit at room temperature (RT)
for 5 min. This process disrupts protein–protein interac-
tions and ensures that RBP–RNA adducts are free of non-
RBP contaminants.

5. Add chloroform (4 ml for leaf and 2 ml for root sample) and
vigorously vortex the mixture for 15 s. Incubate the mixture
at RT for 5 min.

6. Centrifuge the tubes at 10 000 g for 15 min to form three
phases: the aqueous phase, the interphase, and the organic
phase (first round of phase extraction).
Notes: The insoluble interphase contains much fewer con-
taminants after introducing the lysis and pre-clearance
steps (steps 2 and 3) when compared with samples directly
lysed with trizol without spinning down the cell debris
(Fig. 2).

7. Sequentially remove the aqueous and organic phases by
pipetting with gel loading tips (‘low retention tips are
strongly recommended’) or a syringe with a narrow needle
(30G). Centrifuge the tube containing the interphase at
10 000 g for 5 min and remove the residual aqueous and or-
ganic phases.
Notes: It’s normal to carry residual contaminants from the
aqueous and the organic phases. Be careful not to agitate
the interphase when transferring the aqueous and the or-
ganic phases.

8. Add 1 ml of Trizol to the interphase and vortex for 15 s.
Incubate at RT for 5 min.

9. Add 200 ml of chloroform to the tube and vortex for 15 s. Let
sit for 2 min at RT.

Figure 1: Schematic workflow of PPE. Samples are UV-crosslinked,
ground in liquid nitrogen into a fine powder, and lysed with lysis buffer.
Crude cell lysate is further cleared by centrifugation. The supernatant is
collected and subjected to five rounds of phase extraction using Trizol
and chloroform. RBPs associated with RNAs (in the insoluble interphase)
are separated from free RNAs (in the aqueous phase) and proteins (in the
organic phase).

Figure 2: Comparison of phases. Phases from the sample lysed directly
with Trizol (left) and lysed with lysis buffer and pre-cleared by
centrifugation (right) are shown after the Trizol–chloroform phase
separation. A thicker, solid interphase with cell debris can be seen on the
left.
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10. Centrifuge the tube at 10 000 g for 15 min to form phases

again (‘second round of phase extraction’).
11. Repeat steps 7–10 as the third round of phase extraction.
12. Repeat step 7 to separate the interphase.
13. Slowly add 1 ml of 20-propanol to the tube (avoid disrupting

the interphase). Gently flip the tube upside down.
14. Centrifuge the tube at 14 000 g for 5 min to pellet down the

interphase, then discard the supernatant.
15. Rinse the pellet with 1 ml of 70% ethanol and centrifuge

the tube at 14 000 g for 5 min to pellet down the interphase

and discard the supernatant.
16. Repeat step 15.
17. Air dry the pellet, then resuspend the pellet in 300 ml of low

SDS buffer by pipetting.
18. Centrifuge the tube at 14 000 g for 5 min. Save the superna-

tant as eluate 1, and place the tube on ice.
19. Resuspend the pellet again with 300 ml of low SDS buffer by

pipetting.
20. Centrifuge the tube at 14 000 g for 5 min, and save the su-

pernatant as eluate 2.
21. Add 300 ml of high SDS buffer to resuspend the pellet, then

centrifuge the tube at 14 000 g for 5 min. Save the superna-

tant as eluate 3, and place it on ice.
22. Resuspend the pellet with 300ml of high SDS buffer, and

centrifuge the tube at 14 000 g for 5 min. Transfer the su-

pernatant and merge with all the other three eluates.
23. Sequentially add 2 ml of glycogen, 1/10 volume of 5M NaCl

(�120 ml), and nine volumes of ethanol (�12 ml) to the elu-

ates. Leave the tube at �80�C for a duration ranging from

2 h up to overnight.
24. Spin down the RBP–RNA adducts at maximum speed for

30 min.
25. Rinse the pellet with 1 ml of 70% ethanol, spin down the

pellet at 14 000 g for 5 min, and discard the supernatant.
26. Repeat step 25.
27. Air dry the pellet (‘Don’t overdry it’).
28. Add 200 ml of RNase-free water to resuspend the pellet.

Incubate on ice for 1 h with occasional gentle pipetting to

completely dissolve the pellet.

29. Add 50 ml of DNase I mixture (25 ml of 10� DNase I buffer,

18 ml of NEB DNase I, 2 ml of 1 M DTT, and 5 ml of RiboLock

RNase inhibitor) to the solution and incubate at 37�C for

30 min.
30. Add 1 ml of Trizol to the interphase and vortex for 15 s.

Incubate at RT for 5 min.
31. Add 200 ml of chloroform to the tube and vortex for 15 s. Let

it sit for 2 min at RT.
32. Centrifuge the tube at 10 000 g for 15 min to separate the

interphase from the aqueous and the organic phases.
33. Carefully remove the aqueous and the organic phases.
34. Centrifuge the tube at 10 000 g for 5 min, and remove the

residual aqueous and organic phases (‘fourth round of

phase extraction’).
35. Repeat steps 30–34 for a fifth round of phase extraction.
36. Repeat steps 13–15 to wash away the residual aqueous and

organic phases.
37. Briefly air dry the pellet (‘Don’t overdry it’).
38. Add 80 ml of 1� SDS sample buffer to resuspend the pellet.

Denature the proteins by heating them at 99�C for 10 min.

Then the sample is ready for downstream experiments. For

silver staining, 5 ml of 20-fold diluted Input and 1 ml of dena-

tured interphase proteins from CL and noCL samples were

used; for immunoblot, 8 ml of denatured input and inter-

phase proteins from CL and noCL samples were used

(Fig. 3). The remaining samples (40–50 ml) were used for

mass spectrometry analyses.
Note: Instead of being denatured immediately, the RBP-

RNA complexes from step 37 can also be recovered by re-

peating steps 17–28, and treated with RNase or proteinase

to recover RBP or RNA, respectively.

Discussion
Although the phase extraction-based method has been success-

fully applied in human cells, mouse brains, and bacteria, the per-

formance of such an approach in plants is far from satisfactory

[45]. We observed a much more complex interphase without opti-

mizing the protocol used in other organisms to suit plant tissues.

Figure 3: Comparison of interphases between noCL and CL samples. (A) Silver staining of the root total protein (shown as “Input”) and the proteins in
the interphase from the CL and the noCL samples of root tissue. (B) Immunoblot results show the enrichment of three RBPs (AGO1, HLP1, and Fib1/2),
but not the non-RBP contaminant histone H3, in the CL root tissue.
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In this interphase, RBP–RNA adducts are embedded with second-
ary metabolites, starch, and other substances tightly associated
with cell debris. These unwanted elements likely contributed to
the poor recovery of bona fide RBPs and overrepresented non-RBP
contaminants.

We developed the PPE method to counter these challenges.
The PPE protocol introduces a lysis step followed by centrifuga-
tion to clear the cell lysate, a procedure not originally included in
the standard phase extraction process. Additionally, PPE features
multiple rounds of biphasic separations, further improving the
separation and identification of genuine RBPs. We have validated
the robustness and versatility of PPE in capturing the RBPome in
Arabidopsis [1]. When compared to the earlier use of a similar
phase extraction-based technique in Arabidopsis [orthogonal or-
ganic phase separation (OOPS)] [43], PPE markedly outperformed
by capturing a significantly larger and more reliable set of RBPs
(2517 versus 468) [1]. Additionally, PPE demonstrated greater
overlap with each individual RIC RBPome, exhibiting 47%–73%
overlap with RIC, as opposed to the mere 7%–18% overlap dem-
onstrated between RIC and OOPS. Moreover, PPE surpassed the
RIC studies in terms of the total quantity and diversity of RBPs
and RBDs [1]. The standout feature of PPE is its capacity to iden-
tify RBPs irrespective of RNA type. Within the dataset obtained by
PPE (PPE-RBPome), almost half of the RBPs (1219) were previously
unidentified in comprehensive RIC studies, which spanned a
wide variety of cell/tissue types and developmental stages focus-
ing on poly(A) RNA RBPs [1]. Of these newly identified 1219 RBPs,
1169 are not included in either the RIC-RBPomes or the OOPS-
RBPome. This clearly illustrates the exceptional capability of PPE
in discovering novel RBPs [1].

The true strength of the PPE method lies in its broad adaptabil-
ity. It can be used with minimal or no modification to identify
RBPs across various complex tissues and other plant species.
Furthermore, it can detect RBP–RNA dynamics under a range of
conditions, from normal plant growth to stress conditions and
during different developmental transitions. The PPE method is an
effective tool for expanding our understanding of RBPs and their
critical roles in plant biology.
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