

Livestock In The U.S.

- Employs 1.6 million people
- \$31.8 billion in exports
- Recycle 43.2 billion kg of human-inedible by-products of food, fiber, & biofuel
- Adhesives, ceramics, cosmetics, fertilizer, germicides, textiles, ointments, heart valves, etc.
- Convert resources that people cannot use into things we can.

Livestock In The News

Is the Livestock Industry Destroying the Planet?

SMITHSONIAN.COM

Our results suggest that vegetarians have a significantly lower ischemic heart disease mortality (29%) and overall cancer incidence (18%) than nonvegetarians.

Huang et al. (2012) Annals Nutr. & Metab. 60:233-240

Researchers Say Only Way to Guarantee Enough Food in 2050 Is if the World Turns Vegan

Livestock pollute water & air, erode land, cause deforestation, are inefficient, compete with people for food & water....

By-Product Feeds

Our Food Web

U.S. Dairy Forage Research Center

Van Horn and Hall, 1997

Plant Agriculture

What would U.S. food supply, meeting U.S. nutrient requirements, and green house gas production look like if we removed farmed animals?

U.S. Population

- 316 million people
- 36 nutrients
- Requirements 1 year

69.9 dogs 74.1 cats 8.3 birds 89.4 other 10.2 horses

Rendered products Protein 727.5 K tons Fats 143.3 K tons

Nutrition Facts Serving Size 1 cup (28a) Children Under 4 - 3/4 cup (21a) Servings Per Container about 18 Children Under 4 - about 24 Cereal for Children **Amount Per Serving** Cheerios skim milk Under 4 100 150 80 Calories 15 20 10 Calories from Fat % Daily Value** Total Fat 2g* 3% 3% 1.5q Saturated Fat 0.5g 3% 3% 0g Trans Fat 0q 0q 0.5q Polyunsaturated Fat 0.5g Monounsaturated Fat 0.5g 0.5q Cholesterol Omg 0% 1% 0ma Sodium 140mg 6% 8% 105ma Potassium 180mg 5% 11% 135mg Total Carbohydrate 20q 7% 9% 15g 11% 2g Dietary Fiber 3g 11% Soluble Fiber 1a 0g Sugars 1g 1g Other Carbohydrate 16a 12g Protein 3q 2g % Daily Value** Protein 9% 10% Vitamin A 15% 10% Vitamin C 10% 10% 10% Calcium 8% 10% 25% Iron 45% 50% 45% Vitamin D 25% 6% 10% Thiamin 35% 25% 30% Riboflavin 2% 2% 10% Niacin 25% 25% 35% Vitamin Be 25% 25% 45% Folic Acid 60% 50% 50% Vitamin B₁₂ 25% 30% 30% Phosphorus 8% 20% 10% Magnesium 8% 10% 10% Zinc 25% 30% 30%

* Amount in careal A annin-

Food

- 26 animal, 89 plant
- All crops except seeds, industrial use, & aflatoxin corn
- Max edible portion
- Nutrients only from foods
- Least cost diets to meet needs

Why Not More Fruits & Vegetables?

- US imports 51% of fruits,39% of vegetables.
- Weather/Climate/Temp
- Soil quality/Elevation/Slope
- Water availability
- Food waste
- Profitability / Risk

% of Food Wasted

FAO. 2011. Global food losses and food waste – Extent, causes and prevention.

Greenhouse Gas (GHG)

- 9% U.S. greenhouse gas is from agriculture
- ~50% from animal agriculture
- Removal of animals, new crops.
- Synthesis of fertilizer to replace manure.
- Incineration of human-inedible byproducts;P & K recycled to fertilizer.

- Industry
- Transportation
- Commercial
- Residential
- Agriculture

2013 CO₂ equivalents, EPA, 2017

Results: Food Production

Plants-only system:

- Increased 23%, primarily as grain.
- Grain: 77% corn.
- Legumes: 92% soy and soy flour.

Nutrient Adequacy: Available Food

Available food:

Current
To current
use of U.S.
production
+ imports

Current average diet:

Deficient in calcium, vitamin D, and choline.

Diet composition, % of food type:

USDA-ERS, US Food Commodity Available by Food Source, accessed 2014

Results: Diets From Available Food

\$2.05

1,457/1,153

Plants-only system:

Food: total/solids, g 1,746/631

\$2.81

- Lower diet cost & greenhouse gas equivalents per person.
- Deficient in more nutrients. Cifelli et al. 2016, NAHNES A, D, Ca, protein
- Greater food & calorie (145 to 230%) intakes; density.

Plants-Only: Nutrient Deficiency

Plants do not have, or have low concentrations of some nutrients.

Long Chain Fatty Acids

Omega-3: EPA & DHA

Infants: Cognitive & visual

development

Adults: Cardiovascular health

Omega-6: Arachidonic

Infants: Visual acuity

Calcium

Bone, electrolyte, milk
Many physiological functions

<u>Vitamin B12</u>

Brain & nervous system Red blood cell formation

Results: Greenhouse Gas

Agricultural GHG

Plants-only system:

- Counterbalanced by fertilizer synthesis & all land now allocated to food production.

A Change Creates Other Changes

Agriculture Without Animals:

- More total food.
- Small U.S. GHG decline.
- The food produced would not support U.S. nutrient needs.
- Agriculture is a system. Need to look at many, many more factors and how they fit together to have an accurate picture.

Questions?

U. S. Dairy Forage Research Center www.ars.usda.gov/mwa/madison/dfrc