How low can you go with protein in dairy cattle diets?

World Dairy Expo October 3, 2012

Glen Broderick
U.S. Dairy Forage Research Center
Madison, Wisconsin

How can we Maintain Production on Lower Protein Diets?

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Rumen-Degraded Protein (RDP) Source

(Broderick & Reynal, 2009)

	RDP from Urea, % of DM				
Item	0	1.2	2.4	3.7	
		(% of	TDM)		
Corn silage	40	40	40	40	
Alfalfa silage	15	15	15	15	
Ground corn	30	31	33	34	
Solvent SBM	14.0	9.8	5.0	0	
High RUP SBM	0	2.5	5.1	8.0	
Urea	0	0.41	0.84	1.31	
Crude protein	16.1	16.1	16.1	16.1	
RDP (NRC, 2001)	10.6	10.5	10.5	10.5	
NPN, % of Total N	<u>20.3</u>	27.8	35.5	43.6	

Omasal Sampling Tube; Inserting Tube into Omasum

Sampling Tube Positioned thru the Omasal Orifice

R.R. Ashdown

Wisconsin Omasal Sampler

Omasal Sample Collection

Replacing RDP from True Protein (SSBM) with RDP from Urea Reduced N-Utilization (16% Protein Diet)

Rumen-Degraded Protein from True Protein Stimulates Microbial Protein Formation

(Broderick & Reynal, 2009)

How low can you go with protein in dairy cattle diets?

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Effect of Processing on Digestibility of Corn & Barley Starch (Owens et al., 1986)

Proportion of Starch Digestion, %

Processing	Rumen	Small	Large	Total
Method		Intestine	Intestine	tract
Cracked Corn	69	13	8	89
Ground Corn	78	14	4	94
Steam-Flaked Corn	83	16	1	98
High Moisture Corn	<u>a</u> 86	6	1	95
Ground Barley	94	• • •	• • •	• • •
(Oats & Wheat)				

Reduce Corn Particle Size to Improve Rumen Digestion

Rumen NH₃ & Production of Cows fed Alfalfa Silage & High Moisture Corn (Ekinci & Broderick, 1997)

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Production & Feeding--Top Wisconsin Herds

(Shaver et al., 1998)

RHA	Fat	Protein	Dietary CP
(l	bs/lactation))	
31,300	1113	937	19.4%
(119 cows)	(3.55%)	(3.2%) (total protein)	(18.5-21.5%) (28% NDF)

Effect of Dietary [CP] on Intake, Yield & Urinary N (Broderick, 2003)

Effect of CP (Solvent SBM) on Milk & Protein Yield (Olmos & Broderick, 2006)

Production & Feeding--Top Wisconsin Herds

(Shaver et al., 2010)

RHA	Fat	Protein	Dietary CP
(lì	os/lactation)	
34,250	1254	1032	16.9%
(696 cows)	(3.7%)	(3.0%) (true protein)	(16.3-17.5%) (28% NDF)

Production is Going Up while Dietary Protein is Going Down

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Sampling Forage is Very Important

Variation of DM & CP in Alfalfa Silage

(GAB53)

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Diet Composition (Brito & Broderick, 2007)

Item	Urea	SSBM	CSM	CM
		% of	? DM	
Alfalfa silage	21	21	21	21
Corn silage	35	35	35	35
High Moisture Corn	41	31	29	27
Urea	1.9	•••	•••	• • •
Solvent soybean meal	•••	12.1	•••	• • •
Cottonseed meal	•••	•••	14.1	• • •
Canola meal	•••	•••	•••	16.5
Crude Protein	16.5	16.5	16.5	16.5

Protein Supplements & Production

(Brito & Broderick, 2007)

CP Supplement						
Item	Urea	SSBM	CSM	CM	$P > \mathbf{F}$	
(lbs/d)						
DM intake	48.7°	53.4 ^b	54.5 ^{ab}	54.9 ^a	< 0.01	
Milk yield	72.5 ^b	88.2a	89.3 ^a	90.6a	< 0.01	
Protein yield	2.03 ^c	2.71 ^{ab}	2.60 ^b	2.80 ^a	< 0.01	
Fat yield	2.23 ^c	2.69ab	2.60 ^b	2.84 ^a	< 0.01	

SSBM = Solvent Soybean Meal; CSM = Cottonseed Meal; CM = Canola Meal $_{a,b,c}(P < 0.05)$

Protein Supplements & Omasal Protein

Flows (Brito et al., 2007)

	Diets ¹				
Item	Urea	SSBM	CSM	CM	P > F
Microbial Efficiency (g N/kg of OMTDR)	26.3b	29.0 ^a	29.7 ^a	29.5 ^a	<0.01
		g/d	}		
Microbial Protein	2340 ^b	2710 ^a	2710 ^a	2780 ^a	0.04
RUP ('Bypass' Protein)	540 ^c	990 ^b	1350 ^a	1150^{ab}	< 0.01
Total Protein	2880 ^c	3700^{b}	4060a	3930 ^{ab}	<0.01

¹SSBM = solvent soybean meal; CSM = cottonseed meal; CM = canola meal $_{a,b,c}(P < 0.05)$

Essential Amino Acid Contents of Different Proteins (NRC, 2001)

Item	Cow's	Bacterial	Solvent	Cottonseed	Canola
	Milk	Protein	SBM	meal	meal
		((% of EA A	<u>,</u>)	
Lys	16.0	15.8	13.9	<u>9.7</u>	13.2
Lys Met	5.5	5.2	<u>3.2</u>	3.7	4.4
Lys:Met	2.9	3.0	4.4	2.6	3.0
His	5.5	4.0	6.1	6.6	6.6

Greater Protein on Canola Meal due Partly to Better Amino Acid Pattern

Production of Cows Supplemented with Soybean Meal or Canola Meal

	Protein source		
Trait	SBM	CM	P > F
DMI, lb/d	55.1	56.0	0.04
Milk, lb/d	87.5	89.5	< 0.01
Milk/DMI	1.59	1.60	0.16
Fat, lb/d	3.48	3.57	0.11
True Protein, lb/d	2.65	2.71	0.04
MUN, mg/dl	11.5	10.4	< 0.01
Rumen NH ₃ -N, mg/dl	3.3	3.0	0.04
BCVFA, mM	2.7	2.4	0.01

Production of Cows Supplemented with Soybean Meal or Canola Meal

	Protein	_	
Trait	SBM	CM	P > F
DMI, lb/d	55.1	56.0	0.04
Milk, lb/d	87.5	89.5	< 0.01
Milk/DMI	1.59	1.60	0.16
Fat, lb/d	3.48	3.57	0.11
True Protein, lb/d	2.65	2.71	0.04
MUN, mg/dl	11.5	10.4	< 0.01
Rumen NH ₃ -N, mg/dl	3.3	3.0	0.04
BCVFA, mM	2.7	2.4	0.01

Greater Protein on Canola Meal due Partly to More RUP

Effect on Production & Efficiency of Replacing SBM-CP with Protected-Met

- 1. Optimize Microbial Protein in the Rumen
 - a. Meet Requirements for Rumen-Degraded Protein
 - b. Optimize Carbohydrate Fermentation
- 2. Feed Only the Crude Protein Needed.
- 3. Accurately Track Dietary CP.
- 4. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected Amino Acids.
- 5. Lose a Little Production to Maximize Efficiency

Effect of Lowering CP & Increasing RUP

	Normal	RUP/RP-Met
Ingredient	17.5% CP	14.0% CP
	(%	of DM)
Alfalfa silage	25	10
Corn silage	35	50
High moisture corn	24.3	25.2
Solvent SBM	13.3	0
Expeller SBM	0	<u>12.4</u>
Protected-Methionine ¹	0	0.06 (Lys/Met = 3.0)
RDP^2	11.7	7.4
RUP ²	5.8	6.6

Effect of Lowering CP & Increasing RUP*

	Normal	RUP/RP-Met
Item	17.5% CP	14% CP
MP, kg/d	2.68	2.56
NE _L -Milk, lb/d	84	84
MP-Milk, lb/d	90	83
Milk-N/NI, %	27	32
Manure-N, lb/Lact.	344	260

^{*}Estimated using the NRC (2001) Model (DMI = 55 lb/d)

Summary & Conclusions

- 1. Optimize Microbial Protein (True Protein RDP; Process Grains to Increase Rumen Digestion)
- 2. Do Not Over-Feed CP; Track Dietary CP & DM
- 3. Feed RUP with Complementary Amino Acid Pattern
- 4. Rumen-Protected Methionine May Help
- 5. Lowering Dietary CP to Maximize N-Efficiency???
- 6. Dietary Crude Protein Can be Reduced to ~16.5%

Protein Limbo