

Managing Fermentation with Baled Silage

World Dairy Expo 2015 September 30, 2015

Wayne Coblentz
USDA-ARS
US Dairy Forage Research Center
Marshfield, WI

Regardless of silo type, <u>most</u> management principles are the same.

 start with highquality forage

Why Choose Baled Silage over Hay?

- well-made baled silage will often exhibit better quality characteristics than corresponding hays
 - less leaf loss (legumes)
 - less wilting time required
 - reduced risk/exposure to rain damage
 - little or no spontaneous heating
 - no weathering after baling (outdoor storage)

Delaying Harvest: NDF (%) within KY-31 Tall Fescue at Various Maturities

Goal: Silage Preservation

- Establish anaerobiosis (no oxygen)
 - trapped oxygen is removed through respiration of still-functioning plant cells
 - sealing prevents air from re-entering and circulating throughout the silo, thereby preventing decay, losses of DM and energy, and (possibly) production of toxic products

Goal: Silage Preservation

- Establish conditions that encourage proliferation of desirable microorganisms, but discourage undesirable ones
 - desirable (lactic-acid bacteria)
 - undesirable (clostridia, enterobacteria)

Ideally, the goal is to establish a stable silage mass by lowering pH and maintaining anaerobic conditions!

Lactic Acid, The "Good Silage" Acid

plant sugars → lactic acid

Homofermentative

glucose or fructose + 2ADP + 2 Pi \rightarrow 2 lactate + 2 ATP + 2 H₂O

Heterofermentative (multiple pathways)

glucose or fructose + ADP + Pi \rightarrow <u>lactate</u>, acetate, ethanol, mannitol, ATP, H₂O, and CO₂

Typical Characteristics of Chopped Grass Silages in Northern Europe from Different Fermentation Types

Item	Lactic Acid	Wilted	Clostridial	Acetic Acid	Sterilized
DM, %	19.0	30.8	17.0	17.6	21.2
рН	3.9	4.2	5.2	4.8	5.1
Protein N, % of N	23.5	28.9	35.3	44.0	74.0
Ammonia N, % of N	7.8	8.3	24.6	12.8	3.0
Lactic Acid, %	10.2	<i>5.9</i>	0.1	3.4	2.6
Acetic Acid, %	3.6	2.4	2.4	9.7	1.0
Butyric Acid, %	0.1	0.1	3.5	0.2	0.1
WSC, %	1.0	4.8	0.6	0.3	13.3

Plant Factors

- Water Soluble Carbohydrates (WSC)
- Buffering Capacity

Fermentable Sugars Water-Soluble Carbohydrates (WSC)

Sources of Variation for WSC

Species

Cultivar Within Species

Stage of Growth

Time of Day

Climate

Drought

Frost Events

N Fertilization

Rain

Poor/Extended Wilting Conditions

Management

Lactic Acid,
The "Good Silage" Acid
plant sugars → lactic acid

Water Soluble Carbohydrates (WSC) for Selected Forage Crops

Crop/Species	WSC, % of DM
Corn Silage	10 - 20
Forage Sorghum	10 - 20
Sudan, Sorghum-Sudan, Millet	10 - 15
Rye, Oat, Wheat, Triticale	8 - 12
Ryegrass	8 - 12
Alfalfa	4 - 7
Bermudagrass, Stargrass	2 - 4
Bahiagrass	< 5
Limpograss	< 5
Perennial Peanut	1 - 4

Water Soluble Carbohydrates (WSC) for Fall-Grown Oat as Affected by N Fertilization Rate

N Fertilization Rate	2011	2012	
lbs N/acre	% of	DM	
0	12.4	19.3	
22	12.3	17.4	
45	11.5	17.4	
67	10.0	16.5	
90	10.1	16.3	
SEM	0.76	0.53	
Contrast	P >	F	
Linear	0.004	< 0.001	
Quadratic	ns	ns	
Cubic	ns	ns	

¹ ns, non-significant (P > 0.05)

WSC and Starch in Rain-Damaged Alfalfa (1.1 inches)

WSC and Starch in Rain-Damaged Alfalfa (1.9 inches)

How Does WSC Affect Silage Fermentation?

How Does WSC Affect Silage Fermentation?

Ethanol-Dominated Fermentation in Highly Sugared Forage Crops¹

Treatment	Bale Moisture	wsc	Lactic Acid	Ethanol	рН	NDF	СР	TDN
			% of D	М		%	% of DN	1
Boot Stage								
Initial	67.6	22.6			6.90	40.3	13.7	71.4
Final	74.0	17.8	4.82	5.82	4.61	47.0	17.9	67.8
Early Heading Stage								
Initial	63.7	21.0			6.94	46.9	14.6	69.7
Final	67.3	11.9	1.63	4.85	5.71	55.0	16.0	60.9

¹ 'Vista' fall-grown oat.

Buffering Capacities (mEq/kg DM) for Selected Forage Crops

Crop/Species	Range	Mean
Corn Silage	149-225	185
Timothy	188-342	265
Fall Oat (Headed)	300-349	323
Orchardgrass	247-424	335
Red Clover		350
Fall Oat (Boot)	360-371	366
Italian Ryegrass	265-589	366
Alfalfa (mid-bloom)	313-482	370
Perennial Ryegrass	257-558	380
Alfalfa (1/10 bloom)	367-508	438
Alfalfa	390-570	472
White Clover		512

Buffering Capacity (mEq/kg DM) of Wilting Alfalfa Forages as Affected by Natural Rainfall

Buffering Capacity of Alfalfa Forage as Affected by Internal Bale Temperature before Wrapping

Weather Factors

Temperature

Effects of Cold Weather on Fermentation of Fall-Grown Oat

Moisture Management for Baled Silage

Generally, baled silage should be packaged at 45 to 55% moisture (Shinners, 2003); the average for the whole field or group of bales should be about 50%.

- production of silage fermentation acids is positively associated with moisture concentration
- moisture recommendations for chopped silages are < 70%
- as a result, baled silage fermentation is inherently restricted, resulting in a slower fermentation, and a greater (less-acidic) final pH

Fermentation Characteristics of Alfalfa Ensiled in Large-Round Bales at High (60 to 65%) or Ideal (49 to 54%) Moisture

		Day of Fermentation				
Item	Moisture	0	3	9	58	
Lactic Acid, %	High	0.40	1.63	2.45	3.80	
	Ideal	0.40	0.65	1.05	2.84	
Acetic Acid, %	High	1.02	1.30	1.55	1.78	
	Ideal	0.89	0.91	1.09	1.16	
Total Acids, %	High	1.68	3.34	4.35	5.99	
	Ideal	1.55	1.87	2.45	4.37	

Fermentation Characteristics of Alfalfa Forages Ensiled in Large-Round Bales at High (60 to 65%) or Ideal (49 to 54%) Moisture

Lactic Acid Production in Alfalfa Silages Packaged in Large-Rectangular Bales

Clostridial Fermentations (Products: Butyric Acid, Ammonia)

Some Characteristics of High-Risk Forages

- high moisture concentration
 - direct cut forages
- immature, rapidly growing forages
- highly contaminated with dirt, manure, or both
 - low sugar
 - high buffering capacity
 - high protein
 - leguminous
 - non-homogenous forages (baled silage)

The best prevention is to wilt the forage prior to ensiling! As such, baled silage is generally at low risk.

Clostridial Fermentations

Clostridial spores

Butyric Acid, Ammonia "Bad, Evil-Smelling Silage"

Clostridial Counts (log₁₀ genomic copies/g) for Pre-Ensiled and Post-Ensiled Alfalfa Forages Following Applications of Dairy Slurry Using qPCR Methods¹

	Harvest 1		Harv	est 2
Treatment	Pre	Post	Pre	Post
Slurry Application				
No slurry	3.29	4.26	3.88	4.21
Stubble	4.10	5.17	5.06	5.28
1 week	4.48	5.41	4.85	5.45
2 weeks	4.75	5.61	5.06	6.23
SEM	0.198	0.095	0.178	0.074
Contrasts		<i> </i>	P > F	
No Slurry vs. Slurry	0.002	< 0.001	< 0.001	< 0.001
Stubble vs. Delayed	ns²	0.018	ns	< 0.001
1 vs. 2 weeks	ns	ns	ns	< 0.001

¹ Clostridium tyrobutyricum was not detected in dairy slurry or any forage/silage.

² ns, non-signficant (P > 0.05)

Baled Silage vs. Precision-Chopped Haylage

How Do They Compare?

- moisture effects (discussed previously)
- for baled silage, lack of chopping action forces sugars to diffuse from inside the plant to reach lactic-acid bacteria located on the outside of the forage
- although dependent on many factors, baled silage may be less dense (DM/ft³) than some other (chopped) silo types, which also may restrict availability of sugars to lactic acid bacteria

Fermentation Characteristics of Alfalfa Forages Ensiled as Large-Round Bales or as Precision-Chopped Silages¹

		Day of Fermentation				
Item	Туре	0	3	9	58	
Lactic Acid, %	Baled	0.20	0.31	1.14	1.85	
	Chopped	0.26	1.73	2.83	4.97	
Acetic Acid, %	Baled	0.65	0.69	0.79	1.12	
	Chopped	0.68	1.20	1.52	1.83	
Total Acids, %	Baled	0.51	1.43	2.61	3.61	
	Chopped	0.44	3.63	4.90	7.30	

¹ Mean moisture concentration = 61%.

Baled vs. Precision-Chopped Silage Alfalfa/Grass

Baled

▲ Chopped

Elimination of Air

Consequences of Air Access!

- respiration of plant sugars to CO2, water, and heat
- reduces pool of fermentable sugars
- dry matter loss
- increases (indirectly) fiber content of the silage
- decreases energy density of silage

bulk density >10 lbs DM/ft³

- reduce ground speed
- increase PTO speed
- thinner windrows will increase revolutions/bale
- manage moisture appropriately (≈ 50%)
 - *maintain constant bale size
 - baler/operator experience

Sealing the Bale

- lack of bale uniformity will create air pockets for in-line wrapped bales
- use UV-resistant plastic; patch holes with appropriate tape
- wrap as quickly as possible after baling (within 2 hours is ideal)
- use (at least) four layers (1 mil or 25 microns) of stretched plastic (at least six for long-term storage and/or in southern states)
- storage site selection/maintenance is important
- do not puncture plastic isolate from cattle, pets, and vermin

Effects of Wrapping Layers on Fermentation and Alfalfa Forage Quality

Trial	Moisture	Plastic	NDF	ADF	Lactic Acid	рН
#	%	layers		%		#
1	50.2	2	42.6	32.2	1.33	4.80
		4	38.9	30.1	1.96	4.88
		6	39.8	30.4	1.68	4.93
	37.4	2	43.3	31.5	2.56	5.81
		4	39.2	29.7	1.50	4.60
		6	39.6	30.2	1.51	4.98
2	61.3	2	35.9	24.3	4.52	4.49
		4	34.5	23.0	4.47	4.48
		6	33.3	24.0	4.64	4.62

Fermentation Characteristics of Barley Ensiled in Large-Round Bales as Affected by Wrapping Delays¹

	Wrapping Delay, hours					
Item	2 10 19					
рН	5.7	5.6	6.1			
Lactic Acid, %	1.25	1.70	0.82			
Acetic Acid, %	0.33	0.38	0.47			
Butyric Acid, %	trace	trace	trace			
Total Acids, %	1.63	2.15	1.35			

¹ Barley forage baled at 53% moisture.

Fermentation Characteristics of Alfalfa Ensiled in Large-Round Bales as Affected by Wrapping Delays¹

	Wrapping Delay, hours				
Item	0	24	48	72	
Bale Temperature, °F					
at wrapping	95	117	128	147	
maximum	101	121	139	152	
WSC (pre-storage), %	5.3	4.6	4.5	4.0	
WSC (post-storage), %	2.8	3.0	3.6	3.3	
Lactic Acid, %	1.88	1.59	0.73	0.67	
Acetic Acid, %	1.47	0.77	0.61	0.91	
Butyric Acid, %	0.99	0.67	0.12	0.35	
NH ₃ -N, % of N	19.0	15.0	12.4	16.2	
Total Acids, %	4.63	3.19	1.77	2.21	
рН	5.70	5.68	5.78	5.89	

¹ Mean moisture concentration = 59%.

Summary

- Forage crops differ; learn their characteristics.
- Most principles of management for conventional chopped silage still apply to baled silage.
- Moisture management is critical; generally, baled silage techniques will accommodate drier (<50%) forages better than relatively wet (>60%) ones.

Summary

- Fermentation may occur at a slower rate for baled silage because forages are ensiled on a whole-plant basis, and the forage is usually drier than chopped silages.
- As a result, producers should diligently address other management details, such as maximizing bale density, applying plastic wrap promptly and properly, and protecting the wrapped product until feeding.

QUESTIONS?

Leading the world in integrated dairy forage systems research.

U.S. Dairy Forage Research Center

www.ars.usda.gov/mwa/madison/dfrc