

KERNEL PROCESSING: PRINCIPLES, TRENDS AND QUANTIFYING EFFECTIVENESS

University of Wisconsin October 2nd, 2014

Dr. Kevin Shinners and Dr. Brian Luck University of Wisconsin – Madison

HARVESTER VS. NUTRITIONIST

the nutritionist says the silage isn't processed well enough and need to close it down more but when I tried 1.8 mm it plugs
personally think its doing an awesome job at the 2 mm all kernels are broke at least in 2 pieces most are more than that
nutritionists almost always feel that silage could be better processed
Nutritionist has become a four letter word around here
I thought the world was coming to the end as our nutritionist came around and said the silage was perfect

From Machinery Talk 9/24/2014

BRIEF HISTORY

- Developed for European SPFH in 1980's.
- Migrated to NA in mid-1980's:
 - Tower silo fading, longer TLOC possible
 - Greater knowledge of starch and fiber digestion kinetics
 - Rapid adoption b/c of seamless integration

BRIEF HISTORY

BRIEF HISTORY

- Starch fraction (i.e. kernels) processed by:
 - Crushing clearance smaller than kernel
 - Shearing roll speed differential
- Fiber fraction processed by:
 - Shearing roll speed differential

- Particle-size influences:
 - Starch utilization
 - Physically effective fiber
 - Machine throughput; power reqr.; and fuel use
 - Packing density, fermentation

QUANTIFYING PROCESSING EFFECTIVENESS

Poor starch availability

Sieve (mm)	Fiber and starch separations
19	coarse
13	coarse
9.5	coarse
6.7	coarse
4.75	coarse / starch sieve
3.35	medium
2.36	medium
1.18	medium
0.6	fine
pan	fine
·	<u> </u>

Kernel Processing Guidelines

(mass fraction below 4.75 mm)

• > 70% Optimal

• 50-70% Adequate

• < 50% Not adequate

Good starch availability

4.75 mm screen

QUANTIFYING PROCESSING EFFECTIVENESS

Desire FS < 5%, optimally < 3%</p>

From Wacker-Driver - Vita-Plus - 2014

QUANTIFYING EFFECTIVE FIBER

Screen Opening, mm	Recommended Range
19	3 - 8%
8	45 - 65%
1.18	20 - 30%
Pan	< 10%

- Final physical properties of WPSC altered by:
 - Theoretical length-of-cut (TLOC)
 - Roll clearance
 - Speed differential
 - Tooth profile
 - Machine throughput
 - Moisture, maturity, hybrid

- TLOC considerations:
 - Typically set at 19 to 30 mm trending upward
 - Decrease TLOC as crop dries and matures
 - Longer TLOC increases effective fiber and reduces cutting energy but results in:
 - Greater processor energy reqr.
 - Reduced processor throughput
 - Greater processor wear

TLOC considerations:

TLOC Survey of 70 WI Farms					
TLOC Range Number of Sample					
>26 mm	10				
26 mm 33					
22 mm	22				
19 mm	4				
<19 mm	1				

From Randy Shaver - UW - 2014

QUANTIFYING PROCESSING EFFECTIVENESS

From Randy Shaver - UW - 2014

- TLOC considerations:
 - Removing knives from cutterhead to increase TLOC
 - Reduces machine capacity
 - Makes feeding processor more challenging

- Roll clearance considerations:
 - Typically set at 1 to 3 mm
 - Decrease as crop dries and matures
 - Smaller clearance improves processing but results in:
 - Greater processor energy reqr.
 - Reduced processor throughput
 - Greater processor wear

■ Roll clearance considerations:

Roll Clearance Survey of 70 WI Farms					
Roll Clearance Range Number of Sample					
>2.5 mm	2				
2.5 mm	10				
2.0 mm	30				
1.5 mm	11				
1.0 mm	7				
<1.0 mm	3				

From Randy Shaver - UW - 2014

- Speed differential considerations:
 - Typically configured for 20 to 40% trending upward
 - Greater speed differential improves processing but results in:
 - Greater processor energy reqr.
 - Reduced processor throughput
 - Greater processor wear

Speed differential considerations:

Forage Harvester Specific Energy hph/ton						
Roll Clearance	1 mm		3 mm		5 mm	
Roll Speed Diff.						
21%	3.00		2.76		2.70	
42%	3.27		3.00		2.85	
	10%		8%		5%	

From Shinners et al., 1998

- Tooth profile considerations:
 - Triangular and saw (angled) teeth are common
 - Typically 100 150 teeth per 10 in. diameter roll
 - Cross cut rolls trending
 - As tooth profile shrinks, wear rate increases

■ Tooth profile considerations:

From Krone - 2014

From John Deere - 2014

■ Tooth profile considerations:

Processor design considerations:

From John Deere - 2014

PROCESSOR RECOMMENDATION

- Balancing machine, silo and animal needs:
 - DM content of 32 to 36%
 - TLOC 20 to 26 mm
 - Roll clearance 1 to 3 mm
 - CPCS score ~60% at harvest, > 70% after fermentation

Crop maturity considerations:

~ Milkline	Unbroken or Merely Cracked % of total	Kernel Particle Size mm
1/3	14.5 _b	4.9 _b
1/2	12.0 _{ab}	4.8 _b
2/3	8.9 _a	4.6 _a

From Shinners et al., 1998

Crop maturity and moisture considerations:

From Wacker-Driver - Vita-Plus - 2014

Crop maturity and moisture considerations:

From Wacker-Driver - Vita-Plus - 2014

- Crop maturity and moisture considerations:
 - Drier, more mature kernels are "stronger" but maybe more "brittle"
 - Drier, more mature kernels are larger and easier to crush
 - Producers are decreasing TLOC and roll clearance

RESEARCH NEEDS

- Root cause of milk yield improvement from highly processed WPCS:
 - Increased fiber digestion from greater shredding?
 - Smaller particle-size of kernel fraction?

FUTURE OF KERNEL PROCESSING

Separate TLOC and processing of cob and stalk?

From Patent No. 6119443

FUTURE OF KERNEL PROCESSING

Separate TLOC and processing of cob and stalk?

FUTURE OF KERNEL PROCESSING

Separate upper and lower plant components?

RESEARCH NEEDS

Better method of quantifying processed kernel particle-size at harvest....

From Shredlage LLC - 2014

From Pioneer- 2014

QUANTIFYING PROCESSING EFFECTIVENESS

QUANTIFYING PROCESSING EFFECTIVENESS

World Dairy Expo, Madison, WI

Assessment of Corn Silage Kernel Processing Score via Digital Image Processing Techniques

Brian D. Luck
Assistant Professor
and
Extension Specialist

October 2, 2014

Kernel Processing Score (KPS) Determination

- Synonymous with particle size analysis
- Usually done with a Ro-Tap machine and sieves
- Usually done in a laboratory setting
- Producers must send samples off and wait for results

- Goal: Determine KPS in field during harvest
- How? Image analysis
- Precedent for using image analysis for determination

- Measure particle size using image processing
 - Used two different camera resolutions
 - Data collected in ideal laboratory setting
 - Size determination via known object in image

2mm processor gap

3mm processor gap

Major Axis Length (cm)

5mm processor gap

Initial Analysis

- Statistical Analysis ($\alpha = 0.05$)
 - No difference between processor gaps on mean particle size
 - No difference between camera resolutions
 - Doesn't seem right?

Proper Analysis

Statistical Analysis $(\alpha = 0.05)$

- Significant difference between processor gaps on major axis particle size (P = 0.0002)
- No difference between camera resolutions
- Much better!

The SAS System

Effect=resolution Method=LSD(P<0.05) Set=1

Obs	resolution	spacing	Estimate	Standard Error	Letter Group
1	high		0.5159	0.02979	Α
2	low		0.5090	0.02979	Α

Effect=spacing Method=LSD(P<0.05) Set=2

Obs	resolution	spacing	Estimate	Standard Error	Letter Group
3		5	0.6878	0.03849	A
4		3	0.4411	0.03849	В
5		2	0.4084	0.03849	В

Next Steps

- Image processing viable for KPS determination
- Calibrate laboratory analysis for comparison to Ro-Tap determination method
- Assess feasibility of kernel detection in whole plant samples
- Smart phone app development

Brian D. Luck, Ph.D.

Biological Systems Engineering

Email: bluck@wisc.edu

Twitter: @BLuck_BSE_UW