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HOW CLIGEN WORKS: 1. INTRODUCTION 

In CLIGEN, each of eight parameter 
distributions (maximum temperature, minimum 
temperature, solar radiation, precipitation, wind 
direction, wind velocity, temperature dew point, and time 
to peak intensity) is generated by feeding the output 
from a uniform pseudo Random Number Generator 
(RNG) (Fig. 1a) into a Standard Normal deviate 
Generator (SNG) (Fig. 1b), to produce sets of “deviates” 
that approximate the Standard Normal (SN) distribution 
(mean = 0 and Standard Deviation (SD) = 1). 

The CLIGEN stochastic weather generator 
(Nicks et al. 1995) produces time series of daily weather 
parameters from monthly values observed at the site, 
like monthly mean, standard deviation (SD), and 
skewness. This approach permits generation of 
representative weather patterns, for selectable time 
intervals, from a relatively small amount of input data.  
Proper functioning of the climatic equations in weather 
generators absolutely depends upon receiving numeric 
inputs which adhere to the specified distributions that 
the equations are designed for.  It is also desirable that 
the series of numbers used have an element of chance 
or randomness; i.e., that they not be related to each 
other.  For this reason random number generators are 
used to produce them.  This paper will demonstrate that 
in stochastic modeling, we have typically gotten our 
priorities reversed, emphasizing randomness more than  
achieving the required distribution.  We also present a 
solution to the dilemma which is relatively simple to 
implement. 

 

  
Figure 1 

The reader may well ask what all the fuss is 
about.  Aren’t our standard random number generators 
supposed to produce a uniform distribution?  The 
problem lies in the length of run required to achieve this.  
Simple tests on uniform random number generators 
show that 30,000 to 60,000 numbers must be generated 
to yield a population approaching the one desired.  That 
is equivalent to a 1,000 to 2,000 year run with a model 
using monthly parameters like CLIGEN.  Using the 
technique outlined in this paper, we have consistently 
been able to converge upon the historic values within 30 
years. 

 
In CLIGEN the values of each SN distribution 

are then scaled by the corresponding observed 
historical monthly mean, SD, etc. to produce daily 
weather values.  Figure 2 illustrates this process for the 
monthly temperature distribution, which converts a 
standard normal distribution (Fig. 2a) to the temperature 
distribution (Fig.2b) as indicated by the illustration 
below. 

 

  

Other stochastic models which probably are 
impacted by this effect include GEM (Johnson 2001), 
WINDGEN (Wagner 1999), SWAT (Arnold et al. 1995), 
USCLIMATE (Hanson et al. 1994), SWRRB (Arnold and 
Williams 1994), GLEAMS (Knisel 1993), EPIC (Sharpley 
and Williams 1990), WGEN (Richardson and Wright 
1984), and CREAMS (Knisel 1980).  Figure 2 
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As illustrated in Figure 3 the quality of the daily 
weather values (Step 3 -- Circled numbers) produced by 
CLIGEN depend directly upon the quality of the 
distributions produced by the RNG (Step 1) and SNG 
(Step 2). Lack of quality assurance for these 
distributions has potentially serious implications for 
CLIGEN and simulation models (like WEPP and WEPS) 
using its outputs to produce their own estimates (Step 
4). As observed in Numerical Recipes (2000) “... a 
reliable source of random uniform deviates, ... is an 
essential building block for any sort of stochastic 
modeling”. 

 

 
Figure 3 

 
Johnson et al. (1996) observed that while 

CLIGEN reproduced historical long-term average values 
for the simulation period reasonably well, it reproduced 
year-to-year variance in average annual values poorly, 
and did a dismal job of reproducing the monthly 
standard deviations, failing all 72 tests performed.  If the 
problem with CLIGEN were due to the scientific climate 
equations used, the historic means probably would not 
have been successfully reproduced; however, since the 
problem seems to involve the distribution of the outputs 
relative to the mean, it seems more likely that the 
distribution of random numbers fed to the equations is 
suspect.  A RNG should produce sets of numbers 
having a uniform distribution; however, our tests on the 
RNG in CLIGEN showed serious problems, as did our 
tests on the numbers subsequently produced by the 
SNG.  Our tests on the RNG from GEM showed similar 
deficiencies. 

 

2. METHODS 
The Chi-square test can be used to determine 

the probability that a set of numbers fits a specified 
distribution.  This is done by ranking the numbers, 
sorting them into specified intervals, and comparing 
mathematically to the number expected for each 
interval. 

The Central Limit Theorem of statistics states 
that means of samples approach a normal distribution 
as the number of samples becomes large, regardless of 

the underlying distribution (Ross 1993). This powerful 
theorem justifies confidence interval (CI) testing on 
sample means, and even on the sample SD’s if the 
underlying distribution is known.  

2.1. TESTING THE QUALITY OF THE UNIFORM 
DISTRIBUTIONS GENERATED:  

Thus, it is possible using the Chi-square test to 
measure the probability that the RNG is producing the 
uniform distributions required (Fig. 3, Step 1).  Because 
CLIGEN generates its outputs from monthly parameters, 
the random numbers produced by Cligen for each 
parameter, for each month of the year, were subjected 
to a Chi-square test to measure the probability that they 
were NOT from a uniform distribution.  We made runs 
for 5, 10, 30, and 100 years.  One would expect the 
results from a 100 year run to be quite good.  They were 
not (Table 1).  GEM’s RAN3 fared badly as well. 

 
Table 1 
100 yr run.  Probability distribution is NOT uniform.  Chi-square test. 

Parameter: Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec 
MaxTemp 
MinTemp 
Radiation 

PrecipAmt 
WindVel 

TDP 
PrecipPrb 

DSTG 
WindDir 

TimeToPk 

.333 .365 .230 .413 .535 .150 .193 .023 .179 .101 .132 .244 

.406 .491 .634 .207 .123 .780 .818 .395 .477 .679 .310 .916 

.358 .637 .468 .897 .726 .552 .517 .348 .891 .903 .649 .393 

.755 .408 .865 .581 .351 .067 .248 .197 .831 .860 .964 .017 

.706 .250 .132 .410 .410 .862 .930 .964 .944 .923 .679 .919 

.713 .497 .437 .491 .471 .705 .515 .536 .669 .693 .536 .185 

.777 .838 .939 .886 .810 .048 .109 .232 .165 .167 .550 .204 

.924 .307 .247 .143 .216 .166 .163 .225 .223 .381 .627 .175 

.500 .340 .578 .072 .175 .119 .280 .090 .015 063 .320 .100  .

.499 .689 .796 .355 .332 .620 .532 .502 .632 .629 .823 .787 
 

2.2. CONTROLLING QUALITY OF STANDARD 
NORMAL DISTRIBUTIONS AS THEY ARE  
GENERATED:  

The confidence interval approach is commonly 
used in manufacturing to ensure that goods meet the 
desired production quality standards. If CLIGEN’s RNG 
and SNG together are thought of as a “factory” 
producing random numbers, having mean = 0, SD = 1, 
for CLIGEN to consume, the quality of the distribution 
can be both measured and controlled using confidence 
interval testing on the mean and the SD. 

CLIGEN V-5.101 was revised to incorporate 
confidence interval software to test and control the 
numbers produced by the SDG (Fig. 3, Step 2) for use 
by CLIGEN’s equations (Meyer 2001).  This is carried 
forward to all subsequent versions, which we refer to 
here collectively as CLIGEN V-5.x.  We arbitrarily 
enforce a 50% probability they are SN.  This extra 
control should help ensure that the numbers we get out 
of CLIGEN much more closely match the parameters 
we fed in.  Table 3 compares the annual means of daily 
precipitation values from four climatically diverse U. S. 
sites (listed in Table 2), to the values from which 
CLIGEN V-4.2 and V-5.x supposedly computed them (in 
bold type).  The generated weather data were 
subsequently used to compare results from the Water 
Erosion Prediction Project (WEPP) soil erosion model 
(Flanagan and Nearing, 1995). The same hillslope 

 



2.4. QUALITY CONTROL IN CLIGEN V-5.X: topography, soils and land use management were used 
for the WEPP simulations in all four locations (Table 3). In CLIGEN V-5.x, standard normal numbers are 

generated for each parameter a month at a time, and 
subjected to CI tests.  If the probability that the current 
set of numbers is not within specifications exceeds 50%, 
for either mean or SD, they are rejected and a new set 
is generated for  testing. 

 
Table 2 
Climatic Classification of Sites Used. 

Station, 
State 

Abbreviation Precipitation Temperature Köppen 
Climate 

Classification* 
Indianapolis, 
IN 

IND Uniform Warm 
Summer 

Cfb 

College 
Station, TX 

COS Uniform Hot Summer Cfa 

Moscow, ID MOS Dry Warm 
Summer 

Dsb 

Tucson, AZ TUC Dry Hot Summer Csa 

Controlling the means and SD’s of CLIGEN V-5.x’s 
standard normal deviates proved sufficient to bring the 
CLIGEN outputs within the expected bounds for all 
parameters that were tested (maximum temperature, 
minimum temperature, precipitation, and solar 
radiation), if range checks and other mechanisms that 
alter the distributions after generation were disabled.  
For example, minimum temperature is forced to be less 
than maximum temperature for each day, and negative 
precipitation is not allowed.  Constraints are also 
imposed upon radiation values after they are generated. 

* (Griffiths and Driscoll 1982) 
 

Table 3 
Summary of 30 year CLIGEN precipitation generation and WEPP simulation. 

3. RESULTS Station CLIGEN Avg. Annual Avg. Annual Avg. Annual 
 Version /  Precipitation Runoff Sediment Yield 
 Observed [mm] [mm] [t ha-1] 
IND V-4.2 1034.9 307.6 65.6 
 V-5.x 1011.9 265.4 60.8 
 Observed 1013.1 n.a. n.a. 
COS V-4.2 1040.4 307.6 214.9 
 V-5.x 987.7 265.4 174.1 
 Observed 959.5 n.a. n.a. 
MOS V-4.2 643.0 21.7 11.3 
 V-5.x 644.4 21.4 8.4 
 Observed 621.5 n.a. n.a. 
TUC V-4.2 310.1 25.5 21.9 
 V-5.x 291.1 21.2 19.4 
 Observed 293.2 n.a. n.a. 

Results shown here for College Station, TX, 
are typical of all other locations tested.  “Prob Diff” in the 
following figures indicates the probability that the 
population of numbers output differs from the target 
population.   

 

3.1. Comparison of CLIGEN V-4.2 and CLIGEN V-5.x 

The comparison of the means of the two 
CLIGEN versions’ generated standard normal deviates 
(Fig 3, Step 2), to standard normal, is shown for 
maximum temperature in Fig. 5a. Fig. 5b compares the 
means of the historical statistical parameters input and 
the daily maximum temperatures output (Fig. 3, Step 3) 
from CLIGEN.  CLIGEN V-5.x brings the standard 
normal deviates into control, and the outputs also come 
into control. 

n.a. = not available. 
 

2.3. CLIGEN V–4.2 

Using CI tests we observed that the monthly 
means of the daily values (Fig. 3, Step 3) generated for 
maximum temperature (Fig. 4a) and precipitation (Fig. 
4b) fell outside the expected limits an abnormally high 
percentage of the time. 

Maximum temperature exactly follows the 
process of scaling the standard normal deviates outlined 
in Fig 2.  Because no limits are applied after generation, 
which could alter the resulting distribution, one might 
expect Figures 5a and 5b to look identical.  However, 
that is not exactly the case, because the temperature 
calculations utilize a SD computed from the observed 
data . 

 

  

 

  

Figure 4 
 
Because the effect of a single aberrant number 

should be diluted by adding more “good” numbers to the 
pool, when a mean goes out of range one would expect 
that extending the duration of the run might cause the 
mean to return to the expected range.  Runs were made 
increasing the duration by one-year steps from 1 to 100 
years, and then in 100 year steps to 1,000 years.  
Generally, once the runs went outside the confidence 
interval , extending the length of simulation did not 
correct the problem. 

Figure 5 
 
Fig. 6a compares the means of the standard 

normal deviates to standard normal for precipitation for 
both CLIGEN versions. Fig. 6b compares the means of 
the statistical parameters input to the daily precipitation 
output.  CLIGEN V-5.x brings the standard normal 
deviates into control, and the outputs also come into 
control. 

 



 

  
Figure 6 

 
Fig. 7a compares the means of the standard 

normal deviates to standard normal for minimum 
temperature, and Fig. 7b compares the means of the 
statistical parameters input to the daily minimum 
temperature output. CLIGEN V-5.x brings the standard 
normal deviates into control, but the outputs do not 
come into control. The output values for minimum 
temperature show seasonality between winter and 
summer months with winter months being more likely 
out of control. 

 

  
Figure 7 

 

3.2. Effect of CLIGEN versions on WEPP erosion 
model results 

Since CLIGEN’s output reports the historic 
monthly means for the current site, it is easy to 
determine whether the version with quality control (QC) 
is reproducing the historical recorded mean annual 
precipitation better than the original version. The results 
of 30-year water erosion model runs summarized in 
Table 3 show that when CLIGEN V-4.2 differed 
significantly from the QC version CLIGEN V-5.x, the QC 
was closer to the observed average annual 
precipitation. Also note the similarity of average annual 
precipitation and runoff amounts for Moscow, ID (MOS), 
and the difference between the amounts  of average 
annual sediment yield. This underscores the effect of 
accurately reproducing the historical distributions, not 
just the total amounts. 

 

4. DISCUSSION 
One potential problem with this quality control 

approach is that it may skew the results in time. The 
numbers for a given parameter and month of the year 
are generated and tested in combination with those 
previously accepted, as each new year is simulated. 
There are two offsetting factors involved in the test: 1) 
When very few numbers are involved, the confidence 
interval is very wide. There is not enough information to 
constrain the interval much. 2) As more numbers are 
added to the distribution tested, the confidence limits get 
tighter, but adding a really aberrant mean (or SD) does 
not affect the mean of the overall group very much. 

Currently it is not known how these offsetting factors 
play out against each other in the early stages of the 
run. It is conceivable that a divergent number might be 
rejected early in the run, but accepted later, once the 
system has enough “mathematical inertia” not to be 
grossly affected by it. More investigation is needed to 
examine this. Of course if it is determined that the first 5 
years of a 30 year run are biased, one can simply make 
a 35 year run and discard the first 5 years. 

 

5. CONCLUSIONS 
The results of stochastic programs are 

sensitive to the quality of their randomly generated 
distributions.  While randomness is a desirable 
characteristic because it mimics the conditions we 
assume to exist in the physical world, it is of secondary 
importance to the actual distribution in assuring that  the 
equations in our models perform the work they were 
designed to do.  Fortunately as shown in this research, 
this problem is relatively easy to remedy without major 
changes to the existing program structure. The quality 
control method and source code is publicly available on 
the CLIGEN website of the National Soil Erosion 
Research Laboratory (Meyer, 2001). 
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