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Abstract—This study aims to provide general technicians who 
manage pests in production with a convenient way to recognize 
insects. A viable scheme to identify insect sounds automatically is 
proposed by using sound parameterization techniques that 
dominate speaker recognition technology. The acoustic signal is 
preprocessed, segmented into a series of sound samples.  Mel-
frequency cepstrum coefficient(MFCC) is extracted from the 
sound sample as sound features, and probabilistic neural 
network(PNN) is trained with given features. The testing samples 
are classified by the PNN finally. The proposed method is 
evaluated in a database with acoustic samples of 50 different 
insect sounds. The recognition rate was above 96%. The test 
results proved the efficiency of the proposed method. 
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I.  INTRODUCTION  
The detection and identification of insect pests is often 

carried out manually using trapping methods, however, recent 
advances in signal processing and computer technology have 
introduced the possibility of automatically identifying species 
by several means including image analysis and acoustics 
detection. Research into the automated identification of animals 
by bioacoustics is becoming more widespread mainly due to 
difficulties in carrying out manual surveys. Although a 
considerable number of studies have been devoted to the 
problem of speaker identification, automated acoustic species 
identification has been considered just a marginal field of 
pattern recognition and literature on this subject is sparse. 
Basically, acoustic identification of insects is based on their 
ability to generate sound either deliberately, as a mean of 
communication, or as a by-product of eating, flying or 
locomotion. Provided that the bioacoustic signal produced by 
insects follows a consistent acoustical pattern that is species 
specific, it can be exploited for detection and identification 
purposes. Riede shows that insect sound emissions provide a 
reliable taxonomic clue and thus can be used to measure 
biodiversity in his documents[1]. 

The problem of acoustic insect identification can be divided 
into two major stages. The first is feature extraction and the 
second is classification of insects based on the extracted sound 
features. The features should be capable of separating the insect 
species from each other in its space, whereas the classifier 
should be tuned to differentiate the different classes in given 
feature space. Han [2] used frequency spectrum analysis and 
BP neural network to recognize stored producted insects, the 
method was tested in a database including three 

species(Sitophilus oryzae, Sitophilus zeamais and Tribolium 
castaneum)  and got the recognition rate as high as 81% . 
Chesmore et al.[3] investigated techniques for automatically 
identifying Orthoptera (grasshoppers and crickets) with time 
domain signal processing and artificial neural networks. 25 
species of British Orthoptera have been selected as a test set 
and preliminary results indicate very high classification rates. 
Pinhas et al. [4] developed a mathematical method to 
automatically detect acoustic activity of the red palm weevil, 
which utilize Vector quantization (VQ) and Gaussian mixture 
modeling (GMM). Ganchev et al.[5] use dominant harmonic, 
rhythm and duration of pulsations and the 23 linear frequency 
cepstral coefficients(LFCCs) as feature vector after 
normalization, and recognize different insect sounds with 
Probabilistic Neural Network (PNN)-based, Gaussian Mixture 
Models (GMM)-based, and Hidden Markov Model (HMM)-
based classifiers, the approach was evaluated on the singing 
insects of the North America collection (SINA) and got high 
accuracy. 

This paper use MFCC to extract features from insect sounds, 
use PNN to classify sounds. We evaluate our approach on 
stored product insect movement and feeding sounds, movement 
and feeding sounds of soil invertebrates, defensive stridulation 
of soil insects, movement and feeding sounds of insects in 
wood, movement and feeding sounds of insects in plants, wing 
and abdominal vibration sounds, identification accuracy that 
exceeds 96 % has been achieved on recognizing specific 
species. 

 

II. MATERIALS AND PREPROCESSING 

A. Sound recordings and data 
The material used in this paper is insect sound library[6] 

established by Richard Mankin’s research team from 
agricultural research service(ARS) of United States department 
of agriculture (USDA).  The time durations of these recorded 
insect sounds are between 3sec and 60sec. Directly extracting 
feature from those long sound files not only would be high in 
computational complexity, but also would affect the recognize 
accuracy since the background noise are analyzed together with 
useful signals. An active segmentation as long as 1.2sec is 
enough to extract useful parameters, which could decrease the 
computational burden apparently.  We segment every sound 
file into several samples in the preprocessing period according 
to the sound activity. The relative static segmentations are 
deleted.  A new sound library is constructed from those 
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resulting samples and our experiments are carried on with those 
preprocessed samples.   

B. Preprocessing 
Assuming that all the input insect sounds are digital signals 

that have been sampled and quantified, the preprocessing 
would include magnitude normalization and segmentation. 

1) Normalization 

The sound signal is normalized by dividing the maximum 
value of the magnitude, i.e.:  
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where x(i) is the original signal， )(~ ix  is the normalized 
signal，n is the length of the signal. 

2) Pre-emphasis 

Since sound signal degraded in power with the increasing 
of frequency, most of the energy concentrates in lower 
frequency bands, and the signal-to-noise ratio of high 
frequency components would degraded to an unacceptable 
level. Pre-emphasis is a way to boost only the signal's high-
frequency components, while leaving the low-frequency 
components in their original state. The pre-emphasis factor α is 
computed as 

α = exp (-2 π F Δt)                                                       (2) 

where Δt is the sampling period of the sound. The new sound y 
is then computed as: 
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3) Segmentation 

The sound signal is first enframed with certain width, the 
most expressive parts are extracted from them. The 
segmentation is based on the detector of acoustic activity, 
which estimates the pre-emphasis energy for a frame of K 
successive samples as:  

1,...,0

))1()(()(
1

2

−=

−+−+=∑
=

Mk

ikLaxikLxkE
K

i              (4) 

where x is the input signal，k is the frame number，L is a 
predefined step size which defines the degree of overlapping 
between two successive frames, and 
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is the number of frames in a recording with length of K sample 
points. The operator ⎣ ⎦ stands for rounding towards the 
smaller integer value. N is the amount of successive sample 
points in a frame. Since the subsequent estimates of the energy 
are for overlapping groups, the precision of border detection 
depends on the step size L. In this paper, we consider L=80 
(equivalent to time resolution 3.2 milliseconds at 25000 Hz 
sampling frequency), which provides a good trade-off between 

temporal resolution and computational demands. For obtaining 
a smooth estimation of E(k) we used a group size N=256 
samples, which corresponds to frame size of 10.24 
milliseconds. We use the 10% maximum value in short-term 
energy sequence as threshold th, if the short-term energy is less 
than th, we consider the signal is background sound. The data 
between two neighboring background sound is segmented out 
as one sample. If this sample is too short, we deleted it as noise. 
The maximum length of a sample is 1.2 seconds, if the 
segmented sample is longer than 1.2s, just shortened it to 1.2 
seconds with the peak value in the middle of the window. As 
shown in Fig.1, a sound signal with length of 6 seconds is 
broken into three samples that are less than 1.2s after 
normalization.  

 
Figure 1. The segmentation of sound sample 

 

III. MFCC FEATURE EXTRACTION 
The mel-frequency cepstrum (MFC) is a representation of 

the short-term power spectrum of a sound, based on a linear 
cosine transform of a log power spectrum on a nonlinear mel 
scale of frequency. Mel-frequency cepstral coefficients 
(MFCCs) are coefficients that collectively make up an MFC[7, 
8]. They are derived from a type of cepstral representation of 
the audio clip (a nonlinear "spectrum-of-a-spectrum"). The 
difference between the cepstrum and the mel-frequency 
cepstrum is that in the MFC, the frequency bands are equally 
spaced on the mel scale, which approximates the human 
auditory system's response more closely than the linearly-
spaced frequency bands used in the normal cepstrum. The 
relationship between Mel-frequency and linear frequency is 
shown as (Fig.2)： 
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MFCCs are commonly derived as follows (fig.3): 

1) Pre-amphasis: refer to section II. 

2) Hamming windowed：Sound signal is quasi stationary, 
only stationary in short term. In order to analyze it with 
methods used in stationary signals, the quasi stationary 
signal should be segmented into short pieces that we call 
frames.  A window function should be added on to the 
signal to segment out a piece of wave that contains N 
sampling points. Rectangular window function would 
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bring about Gibbs phenomenon at end points. In order to 
minimize the signal discontinuities at the boundaries of 
each frame, we multiply each frame with a raised cosine 
windowing function—Hamming window: 
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where N is the length of a frame which equals to the width of 
Hamming window. In order to capture information that may 
occur at the window boundaries, frames are somewhat 
overlapped. 

 

Figure 2. The relation between Mel pitch and frequency 

 
Figure 3. The flowchart of MFCC extraction 

 
Figure 4. Bank of Mel filters 

3) We set frame length N to 256 ， take Fast Fourier 
Transform(FFT) of each frame, then the spectrum of the 
mth frame is： 
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where {s(n,m)|n=0,1,…,255} are 256 sampling points of the 
mth frame. The square modulus of the above spectrum makes 
the power spectrum. 

4) Map the powers of above obtained spectrum to mel scale, 
filtered with M Mel bandpass filters, resulting in a group 
of coefficients m1,m2,…. The Mel filters are actually 
triangular overlapping windows in mel scale(fig.4).  

5) Take the logs of the powers at each of the mel frequencies.  

6) Take the discrete cosine transform of the list of mel log 
powers, as if it were a signal.  

The MFCCs are the amplitudes of the resulting spectrum: 
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where x’(k) is input power spectrum of the kth filter. M is the 
number of Mel filters, L is the number of frames. 

Standard MFCC can only reflect the static characteristic of 
sound. First order differentials of MFCC (△MFCC), a kind of 
dynamic parameter, can reflect dynamic characteristic of 
sound and has better robusticity. △MFCC can be calculated 
as： 
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where c is MFCC, d is first order differentials of MFCC, k is a 
constant, generally k=2. 

IV. PNN-BASED IDENTIFICATION 
The probabilistic neural network was developed by Donald 

Specht[9, 10]. This network provides a general solution to 
pattern classification problems by following an approach 
developed in statistics, called Bayesian classifiers. The 
probabilistic neural network uses a supervised training set to 
develop distribution functions within a pattern layer. These 
functions, in the recall mode, are used to estimate the 
likelihood of an input feature vector being part of a learned 
category, or class. The learned patterns can also be combined, 
or weighted, with the a priori probability, also called the 
relative frequency, of each category to determine the most 
likely class for a given input vector. If the relative frequency of 
the categories is unknown, then all categories can be assumed 
to be equally likely and the determination of category is solely 
based on the closeness of the input feature vector to the 
distribution function of a class. 
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Probabilistic neural networks can be used for classification 
problems. When an input is presented, the first layer computes 
distances from the input vector to the training input vectors and 
produces a vector whose elements indicate how close the input 
is to a training input. The second layer sums these contributions 
for each class of inputs to produce a vector of probabilities as 
its net output. Finally, a competed transfer function on the 
output of the second layer picks the maximum of these 
probabilities, and produces a 1 for that class and a 0 for the 
other classes. The architecture for this system is shown as fig.5. 

 
Figure 5. Structure of neural network 

It is assumed that there are Q input vector/target vector 
pairs. Each target vector has K elements. One of these elements 
is 1 and the rest are 0. Thus, each input vector is associated 
with one of K classes. 

The first-layer input weights, IW1, 1 (net.IW{1,1} ), are set 
to the transpose of the matrix formed from the Q training pairs, 
P'. When an input is presented, the || dist || box produces a 
vector whose elements indicate how close the input is to the 
vectors of the training set. These elements are multiplied, 
element by element, by the bias and sent to the radbas transfer 
function. An input vector close to a training vector is 
represented by a number close to 1 in the output vector a1. If an 
input is close to several training vectors of a single class, it is 
represented by several elements of a1 that are close to 1. 

The second-layer weights, LW1, 2 (net.LW{2,1}), are set 
to the matrix T of target vectors. Each vector has a 1 only in the 
row associated with that particular class of input, and 0's 
elsewhere. The multiplication Ta1 sums the elements of a1 due 
to each of the K input classes. Finally, the second-layer transfer 
function, compete, produces a 1 corresponding to the largest 
element of n2, and 0's elsewhere. Thus, the network classifies 
the input vector into a specific K class because that class has 
the maximum probability of being correct. 

The PNN introduced by Specht is essentially based on the 
well-known Bayesian classifier technique commonly used in 
many classical pattern-recognition problems. 

Consider a pattern vector ‘x’ with ‘m’ dimensions that 
belongs to one of two categories K1 and K2. Let F1(x) and F2(x) 
be the probability density functions (PDF) for the classification 
categories K1 and K2, respectively[11]. 

From Bayes’ discriminant decision rule, ‘x’: belongs to K1 
if: 
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Conversely, ‘x’ belongs to K2 if 
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where L1 is the loss or cost function associated with 
misclassifying the vector as belonging to category K1 while it 
belongs to category K2, L2 is the loss function associated with 
misclassifying the vector as belonging to category K2 while it 
belongs to category K1, P1 is the prior probability of occurrence 
of category K1, and P2 is the prior probability of occurrence of 
category K2 In many situations, the loss functions and the prior 
probabilities can be considered equal. Hence the key to using 
the decision rules given by equations (11) and (12) is to 
estimate the probability density functions from the training 
patterns. In the PNN, a nonparametric estimation technique 
known as Parzen windows is used to construct the class 
dependent probability density functions (pdf) for each 
classification category required by Bayes’ theory. This allows 
determination of the chance a given vector pattern lies within a 
given category. Combining this with the relative frequency of 
each category, the PNN selects the most likely category for the 
given pattern vector. Both Bayes’ theory and Parzen windows 
are theoretically well established, have been in use for decades 
in many engineering applications, and are treated at length in a 
variety of statistical textbooks. If the jth  training pattern for 
category K1 is xj, then the Parzen estimate of the pdf for 
category K1 is given by equation (13 ) as 

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−
= 22/ 2

)()(
exp

)2(
1)(

σσπ
j

T
j

mm

xxxx
n

xF   (13) 

where, n is the number of training patterns, m is the input space 
dimension, j is the pattern number, and σ is an adjustable 
smoothing parameter. However, the choice of σ in general has 
been found to be not too sensitive to variations in its value. 

Probabilistic neural networks (PNN) can be used for 
classification problems as these networks generalize well. A 
PNN is guaranteed to converge to a Bayesian classifier 
providing it is given enough training data. The only factor that 
needs to be selected for training is the smoothing factor, which 
is the deviation of the Gaussian functions -too small deviations 
cause a very spiky approximation that cannot generalize well; 
too large deviations smooth out details. 

V. EXPERIMENTAL RESULTS 
Proposed approach is implemented with Matlab on Intel 

Core2 2.16GHz,1G RAM PC. There are total 50 different 
insect sounds in the experiment. Every class of sound has 
several different samples, 1 sample is used to establish the 
PNN, the rest are used as testing. 

Table I is the performance evaluation of proposed method. 
The spread value of PNN was chosen as 0.5. The identification 
rate with less than 1.2 seconds of testing data on 50 insect 
sounds for MFCC exceeds 96% and average identification time 
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is less than 10 seconds. Table 2 summarizes the final results for 
different types of insect sounds. As we can see, except that the 
recognition rate for the movement and feeding sounds of 
insects in wood sounds is relatively lower, 92.44%, the 
identification rate of the rest are all above 93%. 

TABLE I.  PERFORMANCE OF AUTOMATIC ACOUSTIC INSECT 
IDENTIFICATION ALGORITHM BASED ON MFCC AND PNN  

Preprocessing time(ms) 364 
Feature extraction time（ms） 244 
Training time（s） 625 
Identification time(s) 9.547
Identification rate(%) 96.17

TABLE II.  A COMPARISON ON RECOGNITION ACCURACY FOR DIFFERENT 
TYPES OF INSECT SOUNDS 

  insect sound types MFCC-PNN 
Stored Product Insect movement and 
feeding sounds (7 classes) 

0.9375 

Movement and feeding sounds of soil 
invertebrates[12-15] (15 classes) 

0.9931 

Defensive stridulation of soil 
insects[16](2 classes) 

1.000 

Movement and feeding sounds of 
insects in wood[17-19] (13 classes) 

0.9244 

Movement and feeding sounds of 
insects in plants(1 class) 

1.000 

Wing and abdominal vibration 
sounds[20](12 classes) 

0.9658 

 

VI. CONCLUSION 
In this paper we accomplish the task of the automatic 

acoustical identification of insects by employing signal 
parameterization methods and state-of-the-art pattern matching 
techniques in a manner that resembles the methodology of 
speaker recognition. The proposed automatic identification 
method employed MFCC as sound feature and PNN as 
classifier which demonstrated good performance in recognizing 
50 specific sounds of insects. However, much work has still to 
be carried out, most of the sound files in this paper were 
selected from noise-free sections of recorded signal, in the 
future, we’ll try to detect and separate insect sounds from 
noises mixed background before recognition. 
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