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Abstract The two major aldehydes (E)-2-hexenal

and (E)-2-octenal emitted as defensive secretions by

bed bugs Cimex lectularius L. (Hemiptera: Cimici-

dae), inhibit the in vitro growth of an isolate of

Metarhizium anisopliae sensu lato (s.l.) (Metsch.)

Sokorin (Hypocreales: Clavicipitaceae) (ARSEF

1548). These chemicals inhibit fungal growth by

direct contact and via indirect exposure (‘‘fumiga-

tion’’). Fumigation with (E)-2-octenal for as little as

0.5 h was sufficient to inhibit all fungal growth. Bed

bugs placed on filter paper treated with an isolate of M.

anisopliae s.l. conidia in the absence of (E)-2-octenal

exhibited 99 % mortality after one week. However,

bed bugs placed on fungal-treated filter paper and

exposed to (E)-2-octenal at 1 h experienced 10 %

mortality. The inhibition of fungal growth by bed bug

aldehydes is discussed in the context of other biotic

and abiotic barriers to infection.

Keywords Cimex lectularius (Hemiptera:

Cimicidae) � Aldehydes � Antifungal activity �
Volatiles � Defensive chemistry � Glandular secretions

Introduction

Entomopathogenic fungi have been used against a

variety of insect species (Shah and Pell 2003), with

Beauveria bassiana (Bals.) Vuillemin (Hypocreales:

Clavicipitaceae) and Metarhizium anisopliae (Metsch.)

Sokorin (Hypocreales: Clavicipitaceae) representing

the active biopesticide in the majority of commercial-

ly-developed products for use against most agricul-

tural insect and arthropod pests (de Faria and Wraigt

2007; Hajek and Delalibera 2010; Vega et al. 2012). In

addition to plant pests, entomopathogenic fungi are

being developed for control of blood-sucking arthro-

pods, including ticks and mosquitoes (Blanford et al.

2005; Bukhari et al. 2011; Fernandes et al. 2012). B.

bassiana was shown to be pathogenic to the bed bug

Cimex lectularius L. (Hemiptera: Cimicidae) (Barbar-

in et al. 2012). Not only was the fungus efficacious, but

due to the gregarious nature of bed bugs, horizontal

transmission also was observed, as infected indi-

viduals could transfer the fungus to uninfected bed

bugs.
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Various abiotic factors such as temperature,

humidity, and sunlight can pose a challenge to the

use of entomopathogenic fungi under field conditions

(Jaronski 2010). The insect cuticle likewise can pose

a physical and chemical barrier to infection by

entomopathogenic fungi (Gołębiowski et al. 2008;

Hajek and St Leger 1994; Ortiz-Urquiza and Key-

hani 2013; Wilson et al. 2001). In this study, we

examine another biotic factor, namely chemical

defensive secretions, which may impact the ability

of an isolate of M. anisopliae sensu lato (s.l) to infect

bed bugs. (E)-2-hexenal and (E)-2-octenal are the

major defensive secretions of immature and adult

bed bugs (Collins 1968; Levinson et al. 1974;

Schildknecht et al. 1964). These aldehydes also are

considered to act as pheromones, affecting bed bug

behavior (Benoit et al. 2009; Harraca et al. 2010;

Levinson et al. 1974; Levinson and Bar Ilan 1971;

Siljander et al. 2008). Kilpinen et al. (2012) reported

that one bed bug could release as much as 40 lg of

these aldehydes in a single emission. One or both of

these aldehydes are found in several other

heteropteran species (Aldrich 1988), where they act

not only as pheromones, but as kairomones, attract-

ing parasitoids (Vieira et al. 2014). (E)-2-hexenal

and (E)-2-octenal also are found in some plants,

where they have been shown to exhibit antibacterial

and antifungal activity (Battinelli et al. 2006;

Bisignano et al. 2001; Cleveland et al. 2009; Kubo

and Kubo 1995; Trombetta et al. 2002). In this study,

we report that (E)-2-hexenal and (E)-2-octenal, can

prevent the in vitro growth and development of an

isolate of entomopathogenic fungus M. anisopliae

s.l, and may be a barrier to infection of bed bugs

with this fungus.

Materials and methods

Chemicals

(E)-2-Hexenal and (E)-2-octenal were obtained from

Bedoukian Research, Inc. (Danbury CT, USA). Their

purity by gas chromatography was 99.7 and 97.6 %,

respectively. Tween� 80 was from Sigma-Aldrich (St.

Louis MO, USA), and spectral grade acetone (Honey-

well Burdick & Jackson, Morristown NJ, USA) was

used for all dilutions of aldehydes.

Fungal isolates

An isolate of wild-type M. anisopliae s.l. (ARSEF

1548) was obtained from the United States Depart-

ment of Agriculture Entompathogenic Fungus Col-

lection in Ithaca, NY, USA. This strain originally was

isolated from the rice black bug Scotinophara coarc-

tata (Hemiptera: Pentatomidae). Fungal cultures were

maintained on DifcoTM potato dextrose agar (= PDA;

Becton–Dickinson, Sparks MD, USA) and incubated

at room temperature for 14 days. Conidia were

harvested by scraping colonies with a sterile spatula

and suspending in distilled water containing 0.01 %

Tween 80. Spore suspensions were determined using a

hemocytometer (Spencer, Buffalo NY, USA) and

adjusted to a concentration of 1 9 107conidia ml-1.

Conidial viability was determined to be above 90 %

for all bioassay and germination studies.

In vitro fungal growth when exposed to (E)-2-

hexenal and (E)-2-octenal

To determine the effect of bed bug aldehydes on fungal

growth in vitro, sterile 6 mm disks (Whatman, Grade

AA) were impregnated with dilutions of either (E)-2-

hexenal or (E)-2-octenal in acetone to yield 0.1, 0.25,

0.33, 0.5, 1, 5, 10, or 20 mg of aldehyde per disk. After

drying, disks were placed in the center of a PDA plate

previously inoculated with 25 ll of fungal suspension

(107 conidia ml-1). To determine any fumigant action

these aldehydes might have, filter paper disks were

prepared as above, and then placed on the inner lid that

covered fungal-inoculated PDA plates. In this way,

aldehyde-treated disks did not come into direct contact

with the inoculated plate. Controls consisted of

inoculated plates exposed to untreated (acetone) disks,

either by direct contact or by fumigation. All cultures

were kept at room temperature and humidity

(25 ± 2 �C and 30 ± 5 % RH) for 72 h at which time

fungal growth was visually assessed by measuring any

zone of inhibition in the inoculated plates. Each

experiment was replicated four times.

To determine the minimum exposure time required

for M. anisopliae s.l. inhibition by fumigation, sterile

6 mm disks were impregnated with 0.5 mg (E)-2-

octenal, the minimal amount needed to suppress all M.

anisopliae s.l. growth (from the preceding ex-

periment). After drying, the treated disks were placed
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on the inner lid that was used to cover a series of PDA

plates that had each been inoculated with 25 ll of

fungal suspension (107 conidia ml-1). Exposure to

octenal was terminated at various times (0.25, 0.5, 1, 2,

and 3 and 24 h) post-exposure, by removing the lids

containing the treated disks and replacing them with

lids containing no disk. Plates were incubated at room

temperature for 72 h and fungal growth assessed, as

above. Controls consisted of inoculated plates exposed

to untreated (acetone) disks. Each experiment was

replicated four times, and kept at the same conditions

as above.

Plates inoculated with M. anisopliae s.l. also were

exposed to 0.5 mg octenal at various times post-

inoculation, to determine fungal growth, if any, when

not exposed to octenal for a prescribed period of time.

This was accomplished by inoculating plates with

25 ll of fungal suspension (107 conidia ml-1), cov-

ering these plates with lids containing no disk, and

then replacing these lids with lids containing octenal-

treated (0.5 mg) disks at 0.5, 1, 2, 3, 4, 6, 12, 24, and

48 h post-inoculation. Each experiment was repeated

four times and plates were kept and assessed as noted

above.

Effects of (E)-2-octenal on M. anisopliae s.l.

germination

To determine conidial germination in the presence of

octenal, plates were inoculated with 2.5 9 104 M.

anisopliae s.l. conidia and exposed to 0.5 mg octenal

at 6 or 12 h post-inoculation by placing lids containing

octenal-treated disks (0.5 mg) at either 6 or 12 h post-

inoculation. Germination was observed under 9400

magnification at 6, 12, 24, and 48 h from the time the

conidia were placed on medium. Conidia with germ

tubes larger than twice the diameter of the conidium

were considered to have germinated (Inglis et al.

2012). Each treatment was repeated four times. 100

conidia per replicate were counted, and mean germ

tube lengths were determined for each treatment.

Controls consisted of inoculated plates exposed to

untreated (acetone) disks.

Bed bugs

A colony of C. lectularius was established from bed

bugs originally obtained from Harold Harlan (Crowns-

ville, MD, USA). The colony was kept at ambient

conditions (25 ± 2 �C and 30 ± 5 % RH) and fed

weekly on expired, human red blood cells and plasma

using an artificial (in vitro) feeding system (Feldlaufer

et al. 2014). Adult males and females were used for the

experiments and had not been fed for eight days prior

to use.

Exposure of bed bugs to M. anisopliae s.l. and (E)-

2-octenal

Bed bugs were exposed to M. anisopliae s.l. by being

placed on filter paper previously treated with conidia.

In these experiments, conidial suspensions in sterile

water containing 0.01 % Tween 80 were applied to

47 mm (diam.) filter paper disks (Whatman No. 1) to

yield a final concentration of 1 9 105 conidia cm-2.

Filter papers were allowed to dry for 120 min before

being placed in glass Petri dishes (60 9 15 mm).

Fifteen adult male and female bed bugs were then

placed on the dried, treated surface. One treatment

group remained as such (fungal-exposed control).

Two additional treatment groups of fungal-exposed

bed bugs had a disk containing 0.5 mg octenal added

to the dish at 1 and 24 h post-exposure, respectively.

Additional control groups consisted of bed bugs

placed on 0.01 % Tween 80-treated filter paper

(untreated), and another fungal treatment group was

removed to an untreated surface 24 h post-exposure.

To determine toxicity, if any, to octenal, bed bugs

were placed on untreated filter paper to which a disk

containing 0.5 mg octenal was added. Each treatment

consisted of three replicates and the experiment was

repeated twice by preparing new aldehyde dilutions

and new fungal suspensions from separate fungal

culture plates.

In these experiments, bed bugs were kept in glass

desiccators (150 mm i.d.; Fischer Scientific, Pitts-

burgh, PA, USA) over distilled water (98 ± 1 % RH)

at 25 ± 2 �C, and mortality was assessed at one week

post-treatment. We had previously shown (Ulrich

et al. 2014) that this humidity was necessary to cause a

[98 % infection rate in fungal-treated bed bugs.

Mycosis was confirmed in all treated bugs that died, by

maintaining them at 100 % RH for an additional week

and viewing them under a stereomicroscope (see

Lacey and Solter 2012). Temperature and RH were

verified by traceable relative humidity-temperature

meters (Fisher, Pittsburgh, PA, USA).
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Statistical analysis

For treatment comparisons for the mortality and

germination data, R statistical software (R Core Team

2014) was used to fit a generalized linear model (Bates

et al. 2014), where we assumed the sampling distri-

bution was an over-dispersed binomial (quasi-bino-

mial). The over-dispersion scale factor was estimated

at 1.48 for the mortality data and 1.93 for the

germination data. Germination tube length was ap-

proximately Gaussian following log transformation

and a linear model was fit, which included a time 9

treatment, and time by treatment interaction effect.

Mean separations were done using the ‘‘multcomp’’

package (Hothorn et al. 2008) using ‘‘single-step’’.

Adjusted p values were based on the joint normal or

t distribution of the linear function.

Results

In vitro fungal growth when exposed to (E)-2-

hexenal and (E)-2-octenal

The two aldehydes inhibited in vitro growth of M.

anisopliae s.l. conidia by both direct contact (when a

treated disk was placed on the growth media) and by

fumigation (treated disk placed on the inner cover, not

directly contacting the conidia) (Table 1). At all

exposures, there was either total inhibition of fungal

growth (no evidence of hyphal growth) or unrestricted

fungal growth (no apparent inhibition or zone of

inhibition), when the plates were examined 72 h post-

exposure (Fig. 1a, b). (E)-2-hexenal inhibited all

fungal growth either by contact or fumigation at

amounts of 1.0 mg and above, while (E)-2-octenal

appeared to be somewhat more active, inhibiting all

fungal growth at 0.5 mg and above. Control dishes

treated directly or indirectly with acetone-treated disks

showed no inhibition of fungal growth.

Using the lowest amount of (E)-2-octenal that

exhibited total inhibition (0.5 mg per disk) of M.

anisopliae s.l. by fumigation, we found that all

exposure times greater than 0.25 h resulted in total

inhibition of fungal growth (Table 2). However, when

conidia were allowed to propagate prior to the addition

of octenal disks (0.5 mg per disk), fungal growth was

only observed when the disks were added at 12 h or

later. Interestingly, addition of (E)-2-octenal to

inoculated plates 12 h post-inoculation was the only

instance where we observed zones of inhibition

(Fig. 1c). As stated above, in all other experiments,

regardless of (E)-2-octenal amounts or exposure

times, only total inhibition or unrestricted growth

was observed.

Effects of (E)-2-octenal on M. anisopliae s.l.

germination

We observed that exposure of M. anisopliae s.l.

conidia to octenal affected germination (Fig. 2).

Germination was significantly delayed (GLM based

on quasi-binomial distribution: v2 = 2551.4; df = 6;

P\ 0.001) in our trials (Table 3). Conidia exposed to

octenal 6 h after initial inoculation exhibited no

germination after 12 h compared to controls that had

80 % germination. When exposed to octenal at 12 h

post-inoculation, conidia had significantly less

Table 1 Inhibition of M. anisopliae s.l. (ARSEF 1548) by (E)-2-hexenal and (E)-2-octenal

Aldehyde Amounta (mg)

20 10 5.0 1.0 0.5 0.33 0.25 0.1 Control

(E)-2-hexenal

Contact - - - - ? ? ? ? ?

Fumigation - - - - ? ? ? ? ?

(E)-2-octenal

Contact - - - - - ? ? ? ?

Fumigation - - - - - ? ? ? ?

Plates inoculated with 25 ll of a fungal suspension containing 107 conidia ml-1

- inhibition, ? growth
a 6 mm disk treated with either (E)-2-hexenal or (E)-2-octenal in acetone
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germination at 24 h than controls (85.2 vs. 98.0 %,

respectively). Additionally, aldehyde-exposed conidia

had shorter germ tube lengths compared to controls at

24 and 48 h (GLM based on Gaussian distribution:

F = 3534.6; df = 4, 495; P\ 0.001) (Table 4).

Exposure of bed bugs to M. anisopliae s.l.

in the presence of octenal

There was a significant relationship between mortality

of bed bugs exposed by contact to M. anisopliae s.l.

and the presence (E)-2-octenal (GLM based on quasi-

binomial distribution: v2 = 407.0; df = 5;

P\ 0.001). Bed bugs contacting fungal-treated sur-

faces in the absence of octenal experienced high

mortalities, depending on whether they were removed

from the treated surfaces at 24 h (79 %) or remained

on the treated surface for one week (99 %) (Table 5).

However, we observed lower mortalities in bed bugs

exposed to M. anisopliae s.l. in the presence of (E)-2-

octenal. Mortality was 10 % when a (E)-2-octenal-

treated disk was added to fungal-exposed bed bugs at

1 h, while mortality rose to about 33 % when the

octenal-treated disk was added at 24 h. Little or no

mortality was observed in bed bugs not exposed to

fungal-treated filter paper, even when (E)-2-octenal

was added to the Petri dish.

Discussion

In addition to the barriers posed by the cuticle and insect

immune system (Vilcinskas and Götz 1999; Wang and

St Leger 2005), other biotic factors can limit the

effectiveness of pathogens. For instance, termites show

Fig. 1 Representative fungal growth on agar plates exposed to

either (E)-2-hexenal or (E)-2-octenal. a Unrestricted growth;

b total inhibition of growth. Partial inhibition of growth c only

occurred when an octenal-treated (0.5 mg) disk was added to a

plate inoculated with M. anisopliae s.l. (ARSEF 1548) conidia

12 h previously

Table 2 Suppression of M. anisopliae s.l. (ARSEF 1548)

exposed to (E)-2-octenal at various times

Disk removed ata Disk added atb

Time (h)

0.0 ? nd

0.25 ? nd

0.5 – –

1 – –

2 – –

3 – –

4 nd –

6 nd –

12 nd ±c

24 – ?

48 nd ?

Agar plates inoculated with 25 ll of a M. anisopliae s.l.

suspension containing 107 conidia ml-1

? growth, - inhibition, nd: not determined
a 6 mm disks treated with 0.5 mg (E)-2-octenal were placed

on the inside lids of agar plates at the time of inoculation

(0.0 h), and removed at various times post-exposure by

replacing the lid containing the octenal-treated disk with a

lid containing no disk
b 6 mm Disks treated with 0.5 mg (E)-2-octenal were placed

on the inside lids of agar plates at various times post-

inoculation
c The only time a zone of inhibition was observed (see Fig. 1)
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an array of behavioral and biochemical defenses to

thwart M. anisopliae infection (Chouvenc and Su 2010;

Myles 2002). Likewise, insect defensive secretions

previously have been shown to inhibit both bacterial and

fungal growth in vitro. Salicylaldehyde, released by

larvae of the brassy willow leaf beetle, is toxic to the

entomopathogenic bacteria Bacillus thuringiensis

(Gross et al. 2008), and (E)-2-decenal, a primary

aldehyde component of the stink bug Nezara viridula

scent gland, is fungistatic toward M. anisopliae (Sosa-

Gomez et al. 1997). Our results indicate that these two,

structurally-related aldehydes (E)-2-hexenal and (E)-2-

octenal, considered the primary defensive secretions of

bed bugs, inhibit the in vitro growth ofM. anisopliae s.l.

(ARSEF 1548), and may play a part in disinfecting a bed

bug’s microenvironment consistent with the action of a

Fig. 2 Germination of M. anisopliae s.l. (ARSEF 1548)

conidia in the presence of (E)-2-octenal. a–c Germination of

controls (no aldehyde) at 12, 24 and 48 h respectively; d–f
germination of conidia exposed to aldehyde at 6 h post-

inoculation at 12, 24 and 48 h after initial inoculation

respectively; g–i germination of conidia exposed to aldehyde

at 12 h post-inoculation after 12, 24 and 48 h after initial

inoculation respectively. Bar 25 lm

522 K. R. Ulrich et al.

123



defensive secretion. Interestingly, Sosa-Gomez et al.

(1997) demonstrated that (E)-2-decenal was fungistatic

against M. anisopliae, but not against B. bassiana. This

finding may account for the differential susceptibility of

bed bugs when comparing our results with those of

Barbarin et al. (2012).

Our microscopy results indicate that germinated

conidia require a period of time to recover from

aldehyde exposure before the germination process can

resume. Aldehydes are common disinfectants, able to

alkylate fungal proteins and DNA (Fernandes et al.

2012). Mutations caused by alkylating agents can

induce DNA repair responses delaying germination,

similar to what was reported regarding delayed

germination after exposure to UV radiation (Braga

et al. 2001). Compared to dormant conidia,

metabolically active, germinating conidia may be

better able to repair cellular damage more rapidly.

This would account for why conidia were able to grow

when exposed to octenal 12 h after inoculation but not

at 6 h. Our observations on in vivo conidial growth of

M. anisopliae s.l. indicate that the 12–24 h time frame

is critical with regard to exposure to (E)-2-octenal.

While exposure of bed bugs to an isolate of M.

anisopliae s.l. for 24 h is sufficient to cause 99 %

mortality under our experimental conditions, we

observed significantly lower mortality when octenal-

treated disks were added to fungal-exposed bed bugs

at 1 h post-exposure. In addition, while mortality in

bed bugs increased when the octenal-treated disk was

added at 24 h, the level was still significantly lower

than in fungal-treated control bed bugs, receiving no

aldehyde exposure. In research with two species of

termites, and four species of beetles, M. anisopliae

enters the conidial germination phase of host coloniza-

tion at approximately 12–24 h post-inoculation (Hänel

1982; McCauley and Zacharuk 1968; Moino et al.

2002). Zimmermann (2007) also states that germina-

tion of M. anisopliae conidia generally takes place

about 20 h after contacting the cuticle of a susceptible

insect. Whether these observations with other insect

Table 3 Percent mean germination of M. anisopliae s.l. (ARSEF 1548) observed after 6, 12, and 24 h of incubation after exposure to

(E)-2-octenal at 6 or 12 h after initial inoculation

Total hours incubated

6 h 12 h 24 h

Exposure to aldehyde added at time (h)1

Control 1.0 (0.2, 3.0)a 80.0 (74.2, 85.1)b 98.0 (95.5, 99.4)c

6 h 0 0 1.0 (0.2, 3.0)a

12 h 0.8 (0.1, 2.6)a 80.8 (75.0, 85.7)b 85.3 (80.0, 89.6)b

Each mean percentage represents the average of four replicates, with 100 conidia evaluated per replicate. Conidia with germ tubes

larger than the diameter of the conidium were considered to have germinated. 95 % confidence intervals are shown in parentheses

PDA plates inoculated with 25 ll of a M. anisopliae s.l. suspension containing 106 conidia ml -1

Different superscripts (for both rows and columns) indicate means that differ significantly at P B 0.05
1 6 mm Disks treated with 0.5 mg (E)-2-octenal were placed on the inside lids of agar plates at various times post-inoculation

Table 4 Mean germ tube length of M. anisopliae s.l. (ARSEF

1548) observed after 12, 24, and 48 h of incubation after ex-

posure to (E)-2-octenal at 6 or 12 h after initial inoculation

Total hours incubated

12 h 24 h 48 h

Exposure to aldehyde added at time (h)1

Control 2.2 (2.1, 2.3)a 4.2 (4.1, 4.3)c nd

6 h 0 0 0

12 h 2.0 (1.9, 2.1)a 2.0 (1.9, 2.1)a 3.6 (3.5, 3.7)b

100 germinated conidia evaluated per treatment. Data were

subjected to log transformation before statistically analyzed.

Values in table are expressed in log lm for germ tube lengths.

95 % confidence intervals are shown in parentheses. PDA

plates inoculated with 25 ll of a M. anisopliae s.l. suspension

containing 106 conidia ml -1

nd: not determined

Different superscripts (for both rows and columns) indicate

means that differ significantly at p B 0.05
1 6 mm disks treated with 0.5 mg (E)-2-octenal were placed

on the inside lids of agar plates at various times (in hours) post-

inoculation
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species also apply to bed bugs is speculative. We

likewise recognize that attempts to correlate germi-

nation timing of our in vitro results with in vivo

applications to bed bugs can be problematic, as insect

host cuticle can present a very different substrate, as

pointed out in aphid studies with entomopathogens

(Yeo et al. 2003). Regardless, our study demonstrates

that exposure of conidia from an isolate of M.

anisopliae s.l. (ARSEF 1548) to bed bug defensive

secretions inhibits fungal development both in vitro

and in vivo, and these chemicals may play a role in an

insects’ defense to fungal biopesticides.
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