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Summary 

In this article we provide guidelines on statistical design and analysis of data for all kinds of honey bee research. Guidelines and selection of 

different methods presented are, at least partly, based on experience. This article can be used: to identify the most suitable analysis for the 

type of data collected; to optimise one’s experimental design based on the experimental factors to be investigated, samples to be analysed, 

and the type of data produced; to determine how, where, and when to sample bees from colonies; or just to inspire. Also included are 

guidelines on presentation and reporting of data, as well as where to find help and which types of software could be useful.  

 

Guia estadistica para estudios en Apis mellifera 

Resumen  

En este trabajo se proporcionan directrices sobre el diseño estadístico y el análisis de datos para todo tipo de investigación sobre abejas. 

Tanto las directrices como la selección de los diferentes métodos que se presentan están basadas, al menos en parte, en la experiencia. Este 

artículo se puede utilizar: para identificar el análisis más adecuado para el tipo de datos recogidos; para optimizar el diseño experimental 

basado en los factores experimentales a ser investigados, las muestras a analizar, y el tipo de datos que se producen; para determinar cómo, 

dónde , y cuando muestras abejas de las colonias, o simplemente para inspirar. También se incluyen directrices para la presentación y 

comunicación de los datos, así como dónde encontrar ayuda y distintos software que puedan ser útiles. 

 

西方蜜蜂研究的统计指南 

摘要 

在本文中，我们提供了针对蜜蜂所有研究的统计设计和数据分析指南。这些指南和方法的选择至少部分基于我们的经验。本文也可用于：

针对收集到的数据类型选择最优分析方法；基于所研究的实验因素、待分析的样本和获得的数据类型优化实验设计；确定从蜂群中采集蜜蜂样本

的地点、时间和方式；或者仅为实验提供参考。另外，也包含展示和报告数据时的指南，以及如何寻求帮助和选用何种软件。 
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1. Introduction 

Bees are organisms and, as such, are inherently variable at the 

molecular, individual, and population levels. This intrinsic variability 

means that a researcher needs to separate the various sources of 

variability contained in the measurements, whether obtained by 

observational or experimental research, into signal and noise. The 

former may be due to treatments received, bee age, or innate 

differences in resistance. The latter is largely due to the genetic 

background (and its phenotypic expression) that characterises 

individual living organisms. Statistics is the branch of mathematics we 

use to isolate and quantify the signal and determine its importance, 

relative to the inherent noise. For the researcher, with an eye toward 

the statistical analysis to come, and before data collection starts, one 

should ask:  

1)   Which variables (VIM, 2008) am I going to measure and what 

kind of data will those variables generate?  

2)   What degree of accuracy do I want to achieve and what is the 

corresponding sample size required? 
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3)   Which statistical analysis will help me to answer my research 

question? This is related to the question. What kind of 

underlying process produces data like those I will be 

collecting? 

4) From what population do I want to sample? (What is the 

statistical population/ statistical universe?) For example, do I 

want to make inferences about the local, national, continental, 

or worldwide population?  

One function of statistics is to summarise information to make it more 

usable and easier to grasp. A second is inductive, where one makes 

generalisations based on a subset of a population or based on 

repeated observations (through replication or repeated over time). For 

example, if 50 workers randomly sampled from 20 colonies all 

produce 10-hydroxydecanoic acid (10-HDAA, one of the major 

components in the mandibular gland secretion, especially in workers; Crewe, 

1982; Pirk et al., 2011), one could infer that all workers produce  

10-HDAA. An example of inferring a general pattern from repeated 

observations would be: If an experiment is repeated 5 times and  
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yields the same result each time, one makes a generalisation based 

on this limited number of experiments. One should keep in mind that, 

if one is measuring a quantitative variable, irrespective of how precise 

measuring instruments are, each experimental unit/replicate produces 

a unique data value. A third function of statistics is based on deductive 

reasoning and might involve statistical modelling, in the classical or 

Bayesian paradigm, to understand the basic processes that produced 

the measurements, possibly by incorporating prior information (e.g. 

predicting species distributions or phylogenetic relationships/trees; 

see Kaeker and Jones, 2003). In this article we will cover, albeit only 

cursorily, all three functions of statistics. We have largely focused on 

research with bee pathogens, in part because these are of intense 

practical and theoretical interest, and in part because of our own 

backgrounds. However, bee biology rightly includes a much greater 

spectrum of research, and for much of it there are specialised 

statistical tools. Some of the ones we discuss are broadly applicable 

but, by necessity, this section can only provide an uneven treatment 

of current statistical methods that might be used in bee research. In 

particular, we do not discuss multivariate methods (other than 

principal component analysis); Bayesian approaches, and touch only 

lightly on simulation and resampling methods. All are current fields of 

investigation in statistics. Molecular, and in particular, genomic 

research has spawned substantial new statistical methods, also not 

covered here. These areas of statistics will be included in the next 

edition of the BEEBOOK. 

Furthermore, we restrict ourselves here to providing guidelines on 

statistics for certain kinds of honey bee research, as mentioned 

above, with reference to more detailed sources of information. 

Fortunately, there are excellent statistical tools available, the most 

important of which is a good statistician.   

The statistics we describe can be roughly grouped into two main 

areas, one having to do with sampling to estimate population 

characteristics (e.g. for pathogen prevalence = proportion of infected 

bees in an apiary or a colony), and the other having to do with 

experiments (e.g. comparing treatments, one of which may be a 

control). Due to the complex social structure of a bee hive, and the 

peculiar developmental and environmental aspects of bee biology, 

sampling in this discipline has more components to consider than in 

most biological fields. Some statistical topics are relevant to both 

sampling and experimental studies, such as sample size and power. 

Others are primarily of concern for just one of the areas. For example, 

when sampling for pathogen prevalence, primary issues include 

representativeness, and how or when to sample. For experiments, 

they include hypothesis formulation and development of appropriate 

statistical models for the processes (which includes testing and 

assumptions of models). Of course, good experiments require 

representative samples, and also require a good understanding of 

sampling. Both areas are important for data acquisition and analysis. 

We start with statistical issues related to sampling. 

1.1. Types of data 

There are several points to consider in selecting a statistical analysis 

including sample size, distribution of the data, and type of data. These 

points and the statistical analysis in general should be considered 

before conducting an experiment or collecting data. One should know 

beforehand what kind of measurement and what type of data one is 

collecting. The dependent variable is the variable that may be affected 

by which treatment a subject is given (e.g. control vs. treated, an 

ANOVA framework), or as a function of some other measured variable 

(e.g. age, in a regression framework). Data normally include all measured 

quantities of an experiment (dependent and independent/predictor/

factor variables). The dependent variable can be one of several types: 

nominal, ordinal, interval or ratio, or combinations thereof. An example 

of nominal data is categorical (e.g. bee location A/B/C, where the 

location of a bee is influenced by some explanatory variables, such as 

age) or dichotomous responses (yes/no). Ordinal data are also 

categorical, but which can be ordered sequentially. For example, the 

five stages of ovarian activation (Hess, 1942; Schäfer et al., 2006; 

Pirk et al., 2010; Carreck et al., 2013) are ordinal data because 

undeveloped ovaries are smaller than intermediate ovaries, which are 

smaller than fully developed. However, one cannot say intermediate is 

half of fully developed. If one assigned numbers to ranked categories, 

one could calculate a mean, but it would be most likely a biologically 

meaningless value. The third and fourth data types are interval and 

ratio; both carry information about the order of data points and the 

size of intervals between values. For example, temperature in Celsius 

is on an interval scale, but temperature in Kelvin is on a ratio scale. 

The difference is that the former has an arbitrary “zero point” and 

negative values are used, whereas the latter has an absolute origin of 

zero. Other examples of data with an absolute zero point are length, 

mass, angle, and duration.  

The type of dependent variable data is important because it will 

determine the type of statistical analysis that can or cannot be used. 

For example, a common linear regression analysis would not be 

appropriate if the dependent variable is categorical. (Note: In such a 

case a logistic regression, discussed below, may work). 

 

1.2. Confidence level, Type I and Type II errors, and Power 

For experiments, once we know what kind of data we have, we should 

consider the desired confidence level of the statistical test. This 

confidence is expressed as α; it gives one the probability of making a 

Type I error (Table 1) which occurs when one rejects a true null 

hypothesis. Typically that level for α is set at 0.05, meaning that we 

are 95% confident (1 – α = 0.95) that we will not make a Type I 

error, i.e. 95% confident that we will not reject a true null hypothesis. 

For many commonly used statistical tests, the p-value is the probability 

that the test statistic calculated from the observed data occurred by 

chance, given that the null hypothesis is true. If p < α we reject the 

null hypothesis; if p ≧ α we do not reject the null hypothesis.  
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A Type II error, expressed as the probability ß occurs when one fails to 

reject a false null hypothesis. Unlike α, the value of ß is determined by 

properties of the experimental design and data, as well as how different 

results need to be from those stipulated under the null hypothesis to 

make one believe the alternative hypothesis is true. Note that the null 

hypothesis is, for all intents and purposes, rarely true. By this we mean 

that, even if a treatment has very little effect, it has some small effect, 

and given a sufficient sample size, its effect could be detected. However, 

our interest is more often in biologically important effects and those 

with practical importance. For example, a treatment for parasites that 

is only marginally better than no treatment, even if it could be shown 

to be statistically significant with a sufficiently large sample size, may 

be of no practical importance to a beekeeper. This should be kept in 

mind in subsequent discussions of sample size and effect size. 

The power or the sensitivity of a test can be used to determine 

sample size (see section 3.2.) or minimum effect size (see section 3.1.3.). 

Power is the probability of correctly rejecting the null hypothesis when 

it is false (power = 1 – ß), i.e. power is the probability of not 

committing a Type II error (when the null hypothesis is false) and 

hence the probability that one will identify a significant effect when 

such an effect exists. As power increases, the chance of a Type II 

error decreases. A power of 80% (90% in some fields) or higher seems 

generally acceptable. As a general comment the words "power", 

"sensitivity", "precision", "probability of detection" are / can be used 

synonymously. 

 

 

2. Sampling  

2.1. Where and when to sample a colony  

Colony heterogeneity in time and space are important aspects to consider 

when sampling honey bees and brood. For example, the presence and 

prevalence of pathogens both depend on the age class of bees and 

brood, physiological status of bees, and/or the presence of brood. 

Note that pathogens in a colony have their own biology and that their 

presence and prevalence can also vary over space and time. The 

relation between a pathogen and particular features of a colony should 

be taken into account when deciding where and when samples are 

taken, including the marked seasonality of many pathogen infections. 

2.1.1. When to sample?  

A honey bee colony is a complex superorganism with changing 

features in response to (local) seasonal changes in the environment. 

Average age increases, for example, in colonies in the autumn in 

temperate regions, because of the transition to winter bees. Age-

related tasks are highly plastic (Huang and Robinson, 1996), but after 

a major change of a colony’s organisation it can take some time 

before the division of labour is restored (Johnson, 2005). Immediately 

after a colony has produced a swarm, for example, bees remaining in 

the nest will have a large proportion of individuals younger than 21 

days, lowering the average age of bees in the colonies. Over time, 

these bees will become older and the average age of bees in the 

colony will increase again. Therefore, it is recommended that if the 

aim is to have an average / normal / representative sample with 

respect to age structure, one should only sample established colonies 

that have not recently swarmed. The same is true for recently caught 

swarms, because brood will not have had enough time to develop, 

and one could expect rather an over-aged structure. Age polyethism 

in honey bees and its implications for the physiology, behaviour, and 

pheromones is discussed in detail elsewhere (Lindauer, 1952; 

Ribbands, 1952; Lindauer, 1953; Jassim et al., 2000; Crewe et al., 

2004; Moritz et al., 2004). 

Furthermore, physiological variables in individual bees (and in 

pooled samples from a colony) can change over time when these 

parameters are, for example, related to age of bees or presence of 

brood. Moreover, build-up of vitellogenin takes place in the first 8-10 

days of a bee’s adult life and then decreases, but is much faster in 

summer than in winter when no brood is present and bees are on 

average older (Amdam and Omholt, 2002), affecting averages of 

individual bees of the same age, but also averages of pooled samples. 

Nosema apis, Paenibacillus larvae, and Melissococcus plutonius are 

examples of organisms with bee age-related prevalence in colonies.  

N. apis infections are not microscopically detectable in young bees; 

after oral infection it takes three to five days before spores are 

released from infected cells (Kellner, 1981). P. larvae and M. plutonius 

can be detected in and on young bees that clean cells (Bailey and 

Ball, 1991; Fries et al., 2006). Depending on the disease, higher 

prevalences can be found in colonies with relatively old and young 

bees, respectively. Furthermore, seasonal variation in pathogen and 

parasite loads may also affect when to sample. For example, 

screening for brood pathogens during brood-less periods (e.g. winter, 

in temperate climates) is less likely to return positive samples than 

screening when brood is present.  

 

2.1.2. Where to sample? 

To determine proper locations for sampling inside a beehive, one 

must consider colony heterogeneity in time and space. Feeding brood, 

and capping and trimming of cells takes place in the brood nest. Other 

activities such as cleaning, feeding and grooming, honey-storing, and  
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Table 1. The different types of errors in hypothesis-based statistics.  

  The null hypothesis (H0) is 

Statistical result True False 

Reject null hypothesis Type I error, 
α value = probability 

of falsely rejecting H0 

Probability of correctly 
rejecting H0:  
(1 - ß) = power 

Accept null hypothesis Probability of correctly 

accepting H0 : (1 - α) 

  

Type II error, 
ß value = probability of 
falsely accepting H0 
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Fig. 1. The percentage distribution of age classes recorded between 

24 August and 20 September for pooled colonies of Apis mellifera in 

the Netherlands. The different shades represent different age classes. 

The distribution of age classes did not differ among frames (p = 0.99). 

There was also no difference between the mean number of bees per 

frame (p = 0.94). Adapted from: van der Steen et al. (2012). 

 

 

 

 

 

 

 

 

shaping combs take place all over frames (Seeley, 1985). Free (1960) 

showed an equal distribution of bees of successive age classes on  

combs containing eggs, young larvae, and sealed brood, although 

there were proportionally more young bees (4-5 days old) on brood 

combs and more old bees (> 24 days) on storage combs. Older bees 

were overrepresented among returning bees at colony entrances. This 

was supported by findings of van der Steen et al. (2012), who also 

reported that age classes are distributed in approximately the same 

ratio over frames containing brood (Fig. 1). 

 

2.2. Probability of pathogen detection in a honey bee colony 

For diagnosis or surveys of pathogen prevalence, the more bees that 

are sampled, the higher the probability of detecting a pathogen, which 

is particularly important for low levels of infection. An insufficient 

sample size could lead to a false negative result (apparent absence of 

a pathogen when it is actually present but at a low prevalence). 

Historically, 20-30 bees per colony have been suggested as an adequate 

sample size (Doull and Cellier, 1961) when the experimental unit is a 

colony. However, based on binomial probability theory, such small 

sample sizes will only detect a 5% true prevalence in an infected 

colony with a probability of 65% (20 bees) or 78% (30 bees). If only 

high infection prevalence is of interest for detection, then small 

sample sizes may be acceptable, as long as other sampling issues 

(such as representativeness, see above) have been adequately 

handled. 

In general, sample size should be based on the objectives of the 

study and a specified level of precision (Fries et al., 1984; Table 2). If 

the objective is to detect a prevalence of 5% or more (5% of bees  
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infected) with 95% probability, then a sample of 59 bees per colony is 

needed. If the objective is to detect prevalence as low as 1% with  

99% probability, then 459 bees per colony are required. Above are 

tabulated sample sizes (number of bees) needed based on such 

requirements, provided that every infected bee is detected with 100% 

efficiency. If detection efficiency is less than 100%, this is the 

equivalent (for sample size determination) of trying to detect a lower 

prevalence. For example, if only 80% of bees actually carrying a 

pathogen are detected as positive using the diagnostic test, then the 

parameter P below needs to be adjusted (by multiplying P by the 

proportion of true positives that are detected, e.g. use 0.8*P instead 

of P if the test flags 80% of true positives as positive). Sample size 

needed for various probability requirements and infection levels can 

be calculated from Equation I (Equations adapted from Colton, 1974). 

 

Equation I.  

N = ln(1-D) / ln(1-P) 

where: 

 

N = sample size (number of bees) 

ln = the natural logarithm 

D = the probability (power) of detection in the colony  

P = minimal proportion of infected bees (infection prevalence), 

which can be detected with the required power D by a random 

sample of N bees (e.g. detect an infection rate of 5% or more). 

 

Because the prevalence of many pathogens varies over space and 

time (Bailey et al., 1981; Bailey and Ball, 1991; Higes et al., 2008; 

Runckel et al., 2011), it is important, prior to sampling, to specify the 

minimum prevalence (P) that needs to be detected and the power 

(D). Colony-to-colony (and apiary-to-apiary) heterogeneity exists and 

needs to be taken into consideration in sampling designs. For 

example, a large French virus survey in 2002 (Tentcheva et al., 2004; 

Gauthier et al., 2007) showed that for nearly all virus infections there 

Proportion of infected 

bees, P 

Required probability of 

detection, D 

Sample size needed, 

N 

0.25 0.95 11 

0.25 0.99 16 

0.10 0.95 29 

0.10 0.99 44 

0.05 0.95 59 

0.05 0.99 90 

0.01 0.95 298 

0.01 0.99 459 

Table 2. Example of sample sizes needed to detect different infection 

levels with different levels of probability (from Equation I.).  
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were considerable differences among colonies in an apiary. This 

suggests that pooling colonies is a poor strategy for understanding 

the distribution of disease in an apiary, and that sample size should be 

sufficient to detect low pathogen prevalence, because the probability of 

finding no infected bees in a small sample is high if the pathogen 

prevalence is low, as it may be in some colonies. For a colony with 

low pathogen prevalence, one might have falsely concluded that the 

hive is pathogen-free due to low power (D) to detect the pathogen.  

For Nosema spp. infection in adult bees, the infection intensity 

(spores per bee) as well as prevalence may change rapidly, particularly 

in the spring, when young bees rapidly replace older nest mates. To 

understand such temporal effects on infection intensity or prevalence, 

sample size must be adequate at each sampling period to detect the 

desired degree of change (i.e. larger samples are necessary to detect 

smaller changes). Note that sampling to detect a change in prevalence 

requires a different mathematical model than simple sampling for 

prevalence because of the uncertainty associated with each prevalence 

estimate at different sampling periods. Because, for a binomial distribution, 

variances are a direct function of sample sizes n1, n2, n3, ..., one can 

use a rule of thumb which is based on the fact that the variance of a 

difference of two samples will have twice the variance of each 

individual sample. Thus, doubling the sample size for each period’s 

sample should roughly offset the increased uncertainty when taking 

the difference of prevalence estimates of two samples. For determining 

prevalence, limitations due to laboratory capacity are obviously a 

concern if only low levels of false negative results can be accepted.  

Equation I gives the sample size needed to find a pre-determined 

infection level (P) with a specified probability level (D) in a sample or, 

in the case of honey bees, in individual colonies. If we want to monitor 

a population of colonies and describe their health status, or prevalence 

in this population, we first have to decide with what precision we want 

to achieve detection within colonies. For example, for composite 

samples for Nosema spp. or virus detection in which many bees from 

the same colony are pooled (one yes/no or value per colony), this is 

not a major concern because we can easily increase the power by 

simply adding more bees to the pool to be examined. For situations in 

which individual honey bees from a colony are examined to determine 

prevalence in that colony, we may not want to increase the power 

because of the labour involved. But if the objective is to describe 

prevalence in a population of honey bee colonies, not in the individual 

colony, we can still have poor precision in the estimates if we do not 

increase the number of colonies we sample. There could be a trade-off 

between costs in terms of labour and finance and the precision of 

estimates of the prevalence in each individual. However, if one decreases 

the power at the individual level one can compensate by an increase 

in colonies sampled. The more expensive, or labour intensive, the 

method for diagnosis of the pathogen is, the more cost effective it 
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becomes to lower the precision of estimates of prevalence in each 

individual colony, but increase the number of colonies sampled. 

 

2.2.1. Probability of pathogen detection in a colony based on 

a known sample size  

Instead of focusing on sample size, one can calculate the resulting 

probability of detection of a disease organism using a specific sample 

size. This probability can be calculated (for an individual colony) using 

Equation I, but solving for D, as given in Equation II, below. 

 

Equation II.  

D = 1-(1-P)N 

where  

 

D, P, and N are defined as in Equation I above. 

 

For example, within a colony, if the pathogen prevalence in 

worker bees is 10% (90% of bees are not infected), then the 

probability of detecting the pathogen in the colony using a sample 

size of one bee is 0.10, much lower than that for 30 bees (probability 

is 0.96). A lower prevalence will lower the probability of detection for 

the same sample size (Fig. 2). 

 

Based on Equation II, it is also possible to calculate the number of 

bees that need to be tested (sample size) to detect at least one 

infected bee as a function of the probability, e.g. at a probability of 

detection (D), of 95% or 99% (Fig. 3). The number of bees to be 

tested to detect at least one infected bee is higher if one needs a 

higher probability of detection (D), i.e. when one needs to be able to 

detect low prevalence.  

 

Fig. 2.  The probability of detecting a pathogen in a colony (D) as a 

function of the sample size of bees from that colony, where bees are 

a completely random sample from the colony. The minimal (true) 

infection prevalences (P) are 10% (solid line), 5% (dashed line), and 

1% (dotted line). 



2.2.2. Probability of pathogen detection in a population of 

colonies  

If one wants to calculate the probability of detection of a pathogen in 

a population of colonies using a known number of colonies, this 

probability can be calculated (for a population of colonies) according 

to Equation III. 

 

Equation III.  

E = 1-(1-P*D)N 

where: 

 

E = the probability of detection (in the population) 

D and P are defined as above in Equation I and II, N is the 

sample size, in this case number of colonies 

 

If one wants to determine if a pathogen is present in a population 

and the probability of pathogen detection in individual colonies is 

known (see Equation II above), then one can calculate how many 

colonies need to be sampled in order to detect that pathogen using 

Equation IV. The computation now calculates the probability of at 

least one positive recording in two-stage sampling situations (the 

probability of detection in individual colonies and the probability of 

detection in the population). The probability of pathogen detection in 

the population can be calculated using Equation III, or it can be set to 

0.95 or 0.99, depending on the power required for the investigation. 

 

Equation IV.  

N = ln(1-E) / ln(P * D)  

where: 

 

N, ln, E, P, and D are defined as above in Equations I, II and III 

  

Equation I, II, III, and IV can easily be entered into a spread sheet 

for calculation of sample sizes needed for different purposes and 

desired probabilities of detection.  
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2.2.3. Extrapolating from sample to colony 

A confidence interval of a statistical population parameter, for 

example, the mean detection rate in brood or the prevalence in the 

population/colony, can be estimated in a variety of ways (Reiczigel, 

2003), most of which can be found in modern statistical software. We 

do not recommend using the (asymptotic) normal approximation to 

the binomial method; it gives unreasonable results for low and high 

prevalence. We show here Wilson’s score method (Reiczigel, 2003), 

defined as: 

 

Equation V. 

(2N     + z2  ± z√{z2 + 4N     (1 −  )}) / 2(N + z2), 

 

where N is the sample size;    is the observed proportion as used by 

Reiczigel (2003) to indicate that it is an estimated quantity; and z is 

the 1 – α/2 quantile, which can be defined as a critical value/threshold, 

from the standard normal distribution. A shortcoming for all the 

methods, not only Wilson’s method, is that they assume bees in a 

sample are independent of each other (i.e. there is no over-dispersion, 

discussed below section 5.2.), which is typically not true, especially 

given the transmission routes of bee parasites and pathogens (for a 

detailed discussion of the shortcoming of all methods of confidence 

interval calculation, see Reiczigel, (2003)).  

If the degree of over-dispersion can be estimated, it can be used to 

adjust confidence limits, most easily by replacing the actual sample 

size with the effective sample size (if bees are not independent, then 

the effective sample size is smaller than the actual sample size). One 

calculates the effective sample size by dividing the actual sample size 

by the over-dispersion parameter (see section 5.2.3., design effect or 

deff and see Madden and Hughes (1999) for a complete explanation). 

The latter can be estimated as a parameter assuming the data are 

beta-binomial distributed, but more easily using software by assuming 

the distribution is quasi-binomial. The beta-binomial distribution is a 

true statistical distribution, the quasi-binomial is not, but the 

theoretical differences are probably of less importance to practitioners 

than the practical differences using software.  

Estimating the parameters of the stochastic model and / or the 

distribution which will be used to fit the data, based on a beta-

binomial distribution (simultaneously estimating the linear predictor, 

such as regression type effects and treatment type effects, and the 

other parameters characterising the distribution), is typically difficult in 

today’s software. On the other hand, there are standard algorithms 

for estimating these quantities if one assumes the data are generated 

by a quasi-binomial distribution. Essentially, the latter includes a 

multiplier (not a true parameter) that brings the theoretical variance, 

as determined by a function of the linear predictor, to the observed 

variance. This multiplier may be labelled the over-dispersion 

parameter in software output.  

The quasi-binomial distribution is typically in the part of the 

software that estimates generalised linear models, and requires 

Fig. 3. The number of bees that need to be tested (sample size) to 

detect at least one infected bee as a function of the prevalence (P), 

e.g. at a probability of detection (D) of 95% (solid line) or 99% 

(striped line).  
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not possible, one should control for the biases of observers by 

randomly assigning several different observers to different 

experimental units or by comparing results from one observer with 

previous observers to quantify the bias so one can account for it 

statistically when interpreting results of analyses.  

 

3.1. Factors influencing sample size 

A fundamental design element for correct analysis is the choice of the 

sample size used when obtaining the data of interest. Several factors 

influencing sample size in an experimental setting are considered below. 

 

3.1.1. Laboratory constraints 

Laboratory constraints, such as limitations of space and resources, 

limit sample size. However, one should not proceed if constraints 

preclude good science (see the BEEBOOK paper on maintaining adult 

workers in cages, Williams et al., 2013).  

 

3.1.2. Independence of observation and pseudo-replication 

A second factor in deciding on sample size, and a fundamental aspect 

of good experimental design, is independence of observations; what 

happens to one experimental unit should be independent of what 

happens to other experimental units before results of statistical 

analyses can be trusted. The experimental unit is the unit (subject, 

plant, pot, animal) that is randomly assigned to a treatment. 

Replication is the repetition of the experimental situation by 

replicating the experimental unit (Casella, 2008). Where observations 

are not independent, i.e. there are no true replicates within an 

experiment, we call this pseudo-replication or technical replication. 

Pseudo-replication can either be: i) temporal, involving repeated 

measures over time from the same bee, cage, hive, or apiary; or ii) 

spatial, involving several measurements from the same vicinity. 

Pseudo-replication is a problem because one of the most important 

assumptions of standard statistical analysis is independence. 

having bees grouped in logical categories (e.g. based on age or 

location in a colony), and there must be replication (e.g. two groups 

that get treatment A, two that get treatment B, etc.). In this kind of 

analysis, for the dependent variable one gives the number of positive 

bees and the total number of bees for each category (for some 

software, e.g. in R, one gives the number of positive bees and the 

number of negative bees for each category). 

Prevalence     (estimated proportion positive in the population, as 

in section 2.2.1. and 2.2.2.) and a 95% confidence interval based on 

Wilson’s score method is given in Fig. 4 for sample sizes (N) of 15, 30, 

and 60 bees. Note that, for the usual sample size of 30, there is still 

considerable uncertainty about the true infection prevalence (close to 

30% if half the bees are estimated to be infected). 

 

 

3. Experimental design 

There are five components to an experiment: hypothesis, experimental 

design, execution of the experiment, statistical analysis, and 

interpretation (Hurlbert, 1984). To be able to analyse data in an 

appropriate manner, it is important to consider one’s statistical 

analyses at the experimental design stage before data collection, a 

point which cannot be emphasised enough.  

Critical features of experimental design include: controls, 

replication, and randomisation; the latter two components will be 

dealt with in the next section (3.1.). In terms of a ‘control’ in an 

experiment: a negative control group is a standard against which one 

contrasts treatment effects (untreated or sham-treated control), 

whereas a positive control group is also often included usually as a 

“standard” with an established effect (i.e. dimethoate in the case of 

toxicological studies, see the BEEBOOK paper on toxicology by 

Medrzycki et al., 2013). Additionally, experiments conducted blind or 

double blind avoid biases from the experimenter or observer. If that is 
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Fig. 4. Estimated proportion of infected bees in a population as a function of the number of bees diagnosed as positive (  ) for various sample 

sizes (N = 15, 30, 60).  Lower and upper limits for a 95% confidence interval are based on Wilson’s score method. 
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Repeated measures through time on the same experimental unit will 

have non-independent (= dependent) errors because peculiarities of 

individuals will be reflected in all measurements made on them. 

Similarly, samples taken from the same vicinity may not have non-

independent errors because peculiarities of locations will be common 

to all samples. For example, honey bees within the same cage might 

not be independent because measurements taken from one individual 

can be dependent on the state (behaviour, infection status, etc.) of 

another bee within the same cage (= spatial pseudo-replication), so 

each cage becomes the minimum unit to analyse statistically (i.e. the 

experimental unit). An alternative solution is to try estimating the 

covariance structure of the bees within a cage, i.e. allow for 

correlation within a cage in the statistical modelling.  

But, are honey bees in different cages independent? This and 

similar issues have to be considered and were too often neglected in 

the past. Potential non-independence can be addressed by including 

cage, colony, and any other potentially confounding factors as random 

effects (or fixed effects in certain cases) in a more complex model 

(i.e. model the covariance structure imposed by cages, colonies, etc.). 

If pseudo-replication is not desired and is an unavoidable component 

of the experimental design, then it should be accounted for using the 

appropriate statistical tools, such as (generalised) linear mixed models 

((G)LMM; see section 5.2.).  

 

Some examples may clarify issues about independence of 

observations. 

  

Example 1: A researcher observes that the average number of 

Nosema spores per bee in a treated cage is significantly higher 

than in a control cage; one cannot rule out whether the observed 

effect was caused by the treatment or the cage.  

 

Possible solution 1: Take cage as the experimental unit and pool 

the observations per cage; including more cages is statistically 

preferred (yields more power) to including more bees per cage.  

 

Example 2: Relative to cages containing control bees, 

experimental cages were housed closer to a fan in the lab, 

resulting in higher levels of desiccation for the experimental cages 

and, in turn, higher mortality under constant airflow. In this case, 

the statistical difference between treatments would be 

confounded by the experimental design.   

 

Possible solution 2: A rotation system could be included to ensure 

all cages are exposed to the same environmental conditions i.e. 

placed at identical distances from the fan and for the same 

periods of time.  
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Example 3: Honey bees from treated colonies had high levels of a 

virus and were A. mellifera mellifera, whereas control honey bees 

from untreated colonies that had low levels of a virus were  

A. mellifera ligustica. In such a case the statistical differences 

could be due to colony differences and/or to subspecies 

differences and/or due to the treatment and/or due to interactions.  

 

Possible solution 3: Design the experiment using a factorial design 

with colony as the experimental unit. For half of the colonies in a 

treatment, use A. mellifera mellifera bees and for the other half 

use A. mellifera ligustica bees. Equal numbers of colonies of both 

subspecies should then be present in the treatment and control 

groups. Although equal numbers is not a requirement, it is 

nevertheless preferable to have a completely balanced design 

(equal numbers in each group or cell) for several reasons (e.g. 

highest power, efficiency, ease of parameter interpretation, 

especially interactions). It is, however, also possible to estimate 

and test with unbalanced designs. In a balanced design the 

differences between colonies, subspecies, and treatments (and 

their interactions!) can be properly quantified.  

 

In essence, there are both environmental and genetic factors 

(which can also interact) that can profoundly affect independence and 

hence reliability of statistical inference. The preceding examples 

illustrate, among other things, the importance of randomising 

experimental units among different treatments. The final solutions of 

the experimental design are of course highly dependent on the 

research question and the variables measured.   

In summary, randomisation and replication have two separate 

functions in an experiment. Variables that influence experimental units 

may be known or unknown, and random assignment of treatments to 

cages of honey bees is the safest way to avoid pitfalls of extraneous 

variables biasing results. Larger sample sizes (i.e. replication: number 

of colonies, cages, or bees per cage) improve the precision of an 

estimate (e.g. infection rate, mortality, etc.) and reduce the probability 

of uncontrolled factors producing spurious statistical insignificance or 

significance. Researchers should use as many honey bee colony 

sources from unrelated stock as possible if they want their results to 

be representative, and hence generalisable. One should also not be 

too cavalier about randomising honey bees to experimental treatments, 

or about arranging experimental treatments in any setting, including 

honey bee cage experiments; sound experimental design at this stage 

is critical to good science; more details are provided below.  

 

3.1.3. Effect size 

A third factor affecting decisions about sample size in experimental 

design is referred to as effect size (Cohen, 1988). As an illustration, if 

experimental treatments with a pesticide decrease honey bee food 

intake to 90% that of controls, more replication is needed to achieve 
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statistical significance than if food intake is reduced to 10% that of 

controls (note that one’s objective should be to find biologically 

meaningful results rather than statistical significance). This is because 

treatment has a greater effect size in the latter situation. Effect size 

and statistical significance are substantially intertwined, and there are 

equations, called power analyses (see section 3.2.1.), for calculating 

sample sizes needed for statistical significance once effect size is known.  

Without preliminary trials, effect size, and also statistical power, 

may be impossible to know in advance. If one’s objective is statistical 

significance, and one knows effect size, one can continue to sample 

until significance is achieved. However, this approach is biased in 

favour of a preferred result. Moreover, it introduces the environmental 

influence of time; results one achieves in spring may not be replicated 

in summer e.g. Scheiner et al. (2003) reported seasonal variation in 

proboscis extension responses (previously called proboscis extension 

reflexes; also see Frost et al., 2012). Removing the influence of time 

requires that one decides in advance of replication, and accepts 

results one obtains. Without preliminary trials, it will always be preferable 

to maintain as many properly randomised cages as possible. A related 

factor that will influence sample size is mortality rate of honey bees in 

cages; if control group mortality rates are 20% for individual bees, 

one will want to increase the number of bees by at least 20%, and 

even more if variability in mortality rates is high. Alternatively, without 

knowledge of effect size, one should design an experiment with 

sufficient replicates such that an effect size of biological relevance can 

be measured. 

 

3.2. Sample size determination 

There are many online sample size calculators available on the internet 

that differ in the parameters required to calculate sample size for 

experiments. Some are based on the effect size or minimal detectable 

difference (see section 3.1.3.); for others input on the estimated 

mean (µ) and standard deviation (δ) for the different treatment 

groups is required. Fundamentally, the design of the experiment, the 

required power, the allowed α and the expected effect size dictate the 

required sample size. The following two sections (3.2.1. and 3.2.2.) 

suggest strategies for determining sample size. 

 

3.2.1. Power analyses and rules of thumb 

Power (1-β) of a statistical test is its ability to detect an effect of a 

particular size (see section 3.1.3.), and this is intrinsically linked with 

sample size (N) and the error probability level (α) at which we accept 

an effect as being statistically significant (see section 1., Table 1). 

Once we know two of these values, it is possible to calculate the 

remaining one; in this case for a given α and β, what is N?  Power 

analyses can incorporate a variety of data distributions (normal, Poisson, 

binomial, etc.), but the computations are beyond the scope of this 

paper. Fortunately, there are many freely available computer programs 

that can conduct these calculations (e.g. G*Power; Faul et al., 2007, 
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the R-packages “pwr” and “sample size” online programs can be found 

at www.statpages.org/#Power) and all major commercial packages also 

have routines for calculating power and required sample sizes. 

A variety of ‘rules of thumb’ exist regarding minimum sample 

sizes, the most common being that you should have at least 10-15 

data points per predictor parameter in a model; e.g. with three predictors 

such as location, colony and infection intensity, you would need 30 to 

45 experimental units (Field et al., 2012). For regression models 

(ANOVA, GLM, etc.), where you have k predictors, the recommended 

minimum sample size should be 50 + 8k to adequately test the overall 

model, and 104 + k  to adequately test each predictor of a model 

(Green, 1991). Alternatively, with a high level of statistical power (using 

Cohen’s (1988) benchmark of 0.8), and with three predictors in a 

regression model: i) a large effect size (> 0.5) requires a minimum 

sample size of 40 experimental units; ii) a medium effect size (of ca. 

0.3) requires a sample size of 80; iii) a small effect size (of ca. 0.1) 

requires a sample size of 600 (Miles and Shevlin, 2001; Field et al., 2012).   

These numbers need to be considerably larger when there are 

random effects in the model (or temporal or spatial correlations due 

to some kind of repeated measures, which decreases effective sample 

size). Random effects introduce additional parameters to the model, 

which need to be estimated, but also inflate standard errors of fixed 

parameters. The fewer the levels of the random effects (e.g. only 

three colonies used as blocks in the experiment), the larger the inflation 

will be. Because random factors are estimated as additional variance 

parameters, and one needs approximately 30 units to estimate a 

variance well, increasing the number of levels for each random effect 

will lessen effects on fixed parameter standard errors. That will also 

help accomplish the goals set in the first place by including random 

effects in a designed experiment: increased inference space and a 

more realistic partitioning of the sources of variation. We recommend 

increasing the number of blocks (up to 30), with fewer experimental 

units in each block (i.e. more, smaller blocks), as a general principle 

to improve the experimental design. Three (or the more common five) 

blocks is too few. Fortunately, there are open source (R packages 

“pamm” and “longpower”) and a few commercial products (software 

NCSS PASS, SPSS, STATISTICA) which could be helpful with 

estimating sample sizes for experiments that include random effects 

(or temporally or spatially correlated data).  

If random effects are considered to be fixed effects and one uses 

the methods described above for sample size estimation or power, 

required sample sized will be seriously underestimated and power 

seriously overestimated. The exemplary data set method (illustrated 

for GLMMs and in SAS code in Stroup (2013), though easily ported to 

other software that estimates GLMMs) and use of Monte-Carlo 

methods (simulation, example explained below, though it is not for a 

model with random effects) are current recommendations. For count 

data (binomial, Poisson distributed), one should always assume there 

will be over-dispersion (see section 5.2.3.). 
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3.2.2. Simulation approaches 

Simulation or ‘Monte-Carlo’ methods (Manly, 1997) can be used to 

work out the best combination of “bees/cage” x “number of cages/

group” given expected impact of a certain treatment. Given a certain 

average life span and standard deviation for bees of a control group 

and a certain effect of a treatment (in terms of percentage reduction 

of the life span of bees), one can simulate a population of virtual bees 

each with a given life span. Then a program can test the difference 

between the treated group and the control group using increasing 

numbers of bees (from 5 to 20) and increasing numbers of cages 

(from 3 to 10). The procedure can be repeated (e.g. 100 times) and a 

table produced with the percentage of times a significant difference 

was achieved using any combination of bees/cage x number of cages/

group. 

A program using a t-test to determine these parameters is given 

as online supplementary material (http://www.ibra.org.uk/

downloads/20130812/download). It is assumed that the dependent 

variables in the bee population are normally distributed. The 

simulation can be run another 100 times simply by moving the mouse 

from one cell to another. Alternatively, automatic recalculation can be 

disabled in the excel preferences. 

 

3.2.3. Sample size and individual infection rates 

Common topics in honey bee research are pathogens. Prevalence of 

pathogens can be determined in a colony or at a population level (see 

section 2.2.). Most likely, the data will be based on whether in the 

smallest tested unit the pathogen is present or not: a binomial 

distribution. Hence, sample size will be largely dependent on detection 

probability of a pathogen. However, with viruses (and possibly other 

pathogens), concentration of virus particles is measured on a 

logarithmic scale (Gauthier et al., 2007; Brunetto et al., 2009). This 

means, for example, that the virus titre of a pooled sample is 

disproportionately determined by the one bee with the highest 

individual titre. For the assumption of normality in many parametric 

analyses we suggest a power-transformation of these data (Box and 

Cox, 1964; Bickel and Doksum, 1981). For further reading on sample-

size determination for log-normal distributed variables, see Wolfe and 

Carlin (1999). 

In summary, a minimum sample of 30 independent observations 

per treatment (and the lowest level of independence will almost 

always be cages) may be desirable, but constraints and large effect 

sizes will lower this quantity, especially for experiments using groups 

of caged honey bees. Because of this, development of methods for 

maintaining workers individually in cages for a number of weeks 

should be investigated. This would be an advantage because depending 

on the experimental question, each honey bee could be considered to 

be an independent experimental unit. The same principles of 

experimental design that apply to the recommended number of cages 

also apply to other levels of experimental design, such as honey bees 
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per cage, with smaller effect sizes and more complex questions, 

recommended sample sizes necessarily increase (in other words the 

more variables/factors included, the greater the sample size has to 

be). Researchers must think about, and be able to justify, how many 

of their replicates are truly independent; 30 replicates is a reasonable 

starting point to aim for when effect sizes are unknown, but again, 

this may not be realistic. In the context of wax producing and comb 

building, colony size and queen status play a role. For example, comb 

construction only takes place in the presence of a queen and at least 

51 workers, and egg-laying occurs only if a mated queen is surrounded 

by at least 800 workers (reviewed in Hepburn, 1986; page 156). 

Additionally, novel experiments on new sets of variables means 

uncertainty in outcomes, but more importantly means uninformed 

experimental designs that may be less than optimal. Designs should 

always be scrutinised and constantly improved by including 

preliminary trials, which could, for example, provide a better idea of 

prevalence resulting in a better estimate of the required sample size. 

 

 

4. A worked example 

Although a single recommended experimental design, including 

sample size, may be difficult to find consensus on given the factors 

mentioned above, we provide below a recommendation for experimental 

design when using groups of caged honey bees to understand the 

impact of a certain factor (e.g. parasite or pesticide) on honey bees. 

For our example, imagine the focus is the impact of the gut parasite 

Nosema ceranae and black queen cell virus on honey bees. One 

should consider the following: 

 

1.   Each cage should contain the same number of honey bees, 

and be exposed to the same environmental conditions (e.g., 

temperature, humidity, feeding regime, see the BEEBOOK 

paper on maintaining adult workers in cages, Williams et al., 

2013). Each cage of treated honey bees is a single experimental 

unit, or unit of replication. Because there is no other 

restriction on randomisation, other than the systematic 

sampling from different colonies for each replicate (see 

below), this is a completely randomised design. If one instead 

put only bees from one colony in a cage, but made sure that 

all treatments were evenly represented for each colony (e.g. 5 

cages from colony A get treatment 1, 5 cages from colony A 

get treatment 2, etc.), then we would have a randomised 

complete block design. 

 

2.   We recommend 4-9 replicate cages per treatment. Honey 

bees should be drawn from 6-9 different colonies to constitute 

each replicate and equal numbers of honey bees from each 

source colony should be placed in each cage (i.e., in all cages, 
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including controls and treatments) to eliminate effects of 

colony; this makes only cage a random factor. For example, if 

one draws honey bees from 6 source colonies and wants 

cages to contain 24 honey bees each, then one must randomly 

select 4 honey bees from each colony for each cage. If one 

wants to keep colony and cage both as random effects (e.g. 

to estimate effects of a pathogen on bees from a population 

of colonies, only some of which were sampled), one should 

not mix bees from different colonies in the cages. Note that 

the minimum number of bees also depends on the 

experimental design. Darchen (1956, 1957) showed that 

comb construction only started with a minimum number of 51

-75 workers and a queen; in cases of a dead queen, 201-300 

workers were needed (summarised in Table 14.1 in Hepburn, 

1986). Furthermore, cage design itself can influence 

behaviour (Köhler et al., 2013) therefore identical cages 

should be used for all replicates. A group size of 15 workers 

ensures that the impact of experimentally administered 

Nosema and black queen cell virus in honey bees in general is 

measured, as opposed to impacts of these parasites on a 

specific honey bee colony. It also ensures that chance 

stochastic events, such as all the honey bees dying in a 

specific treatment cage, do not unduly affect the analysis and 

interpretation of results. Low numbers of source colonies (i.e. 

low numbers of replicates) could lead to an over- or under-

estimation of the impact of the studied factor(s). A computer 

simulation based on Monte-Carlo methods (see section 3.2.3.) 

and parametric statistics supports the appropriateness of the 

proposed values. Experiments across replicate colonies must 

be conducted at approximately the same time, because effects 

such as day length and seasonality can introduce additional 

sources of error (see section 2.1.1. and section 3. for 

relationships between model complexity and sources of error). 

 

 

5. Statistical analyses 

5.1. How to choose a simple statistical test  

Before addressing the question of how to choose a test, we describe 

differences between parametric and non-parametric statistics. As 

stated in the introduction, one has to know what kind of data one has 

or will obtain. In the discussion below, we use a traditional definition 

of “parametric” versus “non-parametric tests”. In all statistical tests, 

parameters of one kind or another (means, medians, etc.) are 

estimated. The distinction has grown murkier over the years as more 

and more statistical distributions become available for use in contexts 

where previously only the normal distribution was allowed (e.g. 

regression, ANOVA). “Parametric” tests assume (1) models where the 

residuals (the variation that is not explained by the explanatory 
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variables one is testing, i.e. inherent biological variation of the 

experimental units), following fitting a linear predictor of some kind, 

are normally distributed, or that the data follow a (2) Poisson, 

multinomial, or hypergeometric distribution. This definition holds for 

simple models only; parametric models are actually a large class of 

models where all essential attributes of the data can be captured by a 

finite number of parameters (estimated from the data), so include 

many distributions and both linear and non-linear models, but the 

distribution(s) must be specified when analysing the data. The 

complete definition is quite mathematical. A non-parametric test does 

not require that the data be samples from any particular distribution 

(i.e. they are distribution-free). This is the feature that makes them so 

popular. 

For models based on the normal distribution, this does not mean 

that the dependent variable is normally distributed; in fact one hopes 

it is multimodal, with a different mode for each different treatment. 

However, if one subtracts (or conditions on) the linear predictor (e.g. 

subtract each treatment mean from its group of observations), the 

distribution of each resulting group (and all groups combined) follows 

the same normal distribution. Also, the discussion below pertains only 

to “simple” statistical tests and where observations are independent.  

Note that chi-square and related tests are often considered “non-

parametric” tests. This is incorrect; they are very distribution 

dependent (data must be drawn from Poisson, multinomial, or 

hypergeometric distributions), and observations must be independent. 

Whereas “non-parametric” tests may not require that one samples 

from a particular distribution, they do require that each set of samples 

come from the same general distribution. That is, one sample cannot 

come from a right-skewed distribution and the other from a left-

skewed distribution; both must have the same degree of skew and in 

the same direction. Note that when one has dichotomous (Yes/No) or 

categorical data, non-parametric tests will be required if we stay in 

the realm of “simple” statistical tests (Fig. 4). For parametric statistics 

based on the normal distribution, an important second assumption is 

that the variance among groups of residuals is similar (homogeneous 

variances, also called homoscedasticity) (as shown in Fig. 5a) and not 

heterogeneous variances (heteroscedasticity, Fig. 5b). If only one 

assumption is violated, a parametric statistic is not applicable. The 

alternative in such a case would be to either transform the data (see 

Table 4 and section 5.2.), so that the transformed data no longer 

violate assumptions, or to conduct non-parametric statistics. The 

advantage of non-parametric statistics is that they do not assume a 

specific distribution of the data; the disadvantage is that the power  

(1-ß, see section 1.) is lower compared to their parametric 

counterparts (Wasserman, 2006), though the differences may not be 

great. Power itself is not of such great concern because biologically 

relevant effects shall be detected with a large enough effect size in a 

well-designed experiment. Table 3 provides a comparison 

between parametric and non-parametric statistics.  
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5.1.1 Tests for normality and homogeneity of variances 

The flow diagram in Fig. 6 gives a simple decision tree to choose the 

right test; for more examples, see Table 5. Starting at the top, one 

has to make a decision based on what kind of data one has. If two 

variables are categorical, then a chi-square test could be applicable.  

When investigating the relationship between two continuous 

variables, a correlation will be suitable. In the event one wants to 

compare two or more groups and test if they are different, one 

follows the pathway “difference”. The next question to answer is how 

many variables one wants to compare. Is it one variable (for example 

the effect of a new varroa treatment on brood development in a 

honey bee colony), or is it the effect of varroa treatment and 

supplementary feeding on brood development? For the latter, one  
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could conduct a 2-way ANOVA or an even more complex model 

depending on the actual data set. For the former, the next question 

would be “how many treatments?”; sticking with the example, does 

the experiment consist of two groups (control and treatment) or more 

(control and different dosages of the treatment)? In both cases, the 

next decision would be based on if the data sets are independent or 

dependent. Relating back to the example, one could design the 

experiment where some of the colonies are in the treatment group 

and some in the control, in which case one could say that the groups 

are independent. However, one could as well compare before and 

after the application of the varroa agent, in which case all colonies 

would be in the before (control) and after (treatment) group. In this 

case it is easy to see that the before might affect the after or that the 

two groups are not independent. A classical example of dependent 

data is weight loss in humans before and after the start of diet; 

clearly weight loss depends on starting weight. 

To arrive at an informed decision about the extent of non-

normality or heterogeneity of variances in your data, a critical first 

step is to plot your data: i) for correlational analyses as in regression, 

use a scatterplot ii) for ‘groups’ (e.g. levels of a treatment factor), use 

a histogram or box plot; it provides an immediate indication of your 

data’s distribution, especially whether variances are homogeneous. 

The next step would be to objectively test for departures from 

normality and homoscedasticity. Shapiro-Wilks W, particularly for  

sample sizes < 50, or Lilliefors test, can be used to test for normality, 

and the Anderson-Darling test is of similar if not better value 

(Stephens, 1974). Similarly, for groups of data, Levene’s test tests the 

null hypothesis that different groups have equal variances. If tests are 

significant, assumptions that a distribution is normal or its variances 

are equal must be rejected and either the data has to be transformed, 

a non-parametric test or generalised linear model applied. 

Fig. 5. a. Two similar distributions with different means, where variances of the two groups are homogeneous; b. shows three different  

distributions where the means are the same but the variances of three groups are heterogeneous.  

  Parametric Non-parametric 

Distribution Normal Any 

Variance Homogenous Any 

General data type Interval or ratio 

(continuous) 

Interval, ratio, ordinal 

or nominal 

Power Higher Lower 

Example Tests 

Correlation Pearson Spearman 

Independent data t-test for independent 

samples 

Mann-Whitney U test 

Independent data 

more than 2 groups 

One way ANOVA Kruskal Wallis ANOVA 

Two repeated 

measures, 2 groups 

Matched pair t-test Wilcoxon paired test 

Two repeated 

measures, > 2 groups 

Repeated measures 

ANOVA 

Friedman ANOVA 

Table 3. Comparison between parametric and non-parametric statistics. 

b a 
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clearly not normal (positively/negatively skewed, binary data, etc.), a 

better approach would be to account for this distribution within your 

model, rather than ignore it and settle for models that poorly fit your 

data. As an obvious example, a process that produces counts will not 

generate data values less than zero, but the normal distribution 

ranges from -∞ to +∞. 

 

2. Homogeneity of variances 

As stated above, minor violations of normality can be tolerated in 

some cases, and the same could be said for heterogeneous dependent 

variable/data (non-homogenous variance across levels of a predictor 

in a model, also called heteroscedasticity). However, marked 

heterogeneity fundamentally violates underlying assumptions for 

linear regression models, thereby falsely applying the results and 

conclusions of a parametric model, making results of statistical tests 

invalid. 

 

3. Independence of data  

See section 3.1.2.  Simply, if your experimental design is hierarchical 

(e.g. bees are in cages, cages from colonies, colonies from apiaries) 

or involves repeated measures of experimental units, your data 

strongly violate the assumption of independence and invalidate  

important tests such as the F-test and t-test; these tests will be too 

liberal (i.e. true null hypotheses will be rejected too often).  

 

5.2. Generalised Linear Mixed Models (GLMM)  

A central dogma in statistical analyses is always to apply the simplest 

statistical test to your data, but ensure it is applied correctly (Zuur et 

al., 2009).  Yes, you could apply an ANOVA or linear regression to 

your data, but in the vast majority of cases, the series of 

assumptions upon which these techniques are based are violated by 

‘real world’ data and experimental designs, which often include 

blocking or some kind of repeated measures. The assumptions 

typically violated are: i) normality; ii) homogeneity; and iii) 

independence of data. 

 

1. Normality 

Although some statistical tests are robust to minor violations of 

normality (Sokal and Rohlf, 1995; Sokal and Rohlf, 2012), where your 

dependent variable/data (i.e. the residuals, see section 5.1.) are  
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Distribution Canonical Link 

Gaussian identity (no transformation) 

Poisson log 

Binomial logit 

Gamma inverse 

Table 4. Common underlying distributions for generalised linear models 
and their canonical link functions. 

Fig. 6. A basic decision tree on how to select the appropriate statistical test is shown.  
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Subject Variable Short 

description 

Fields of research 

where it is used 

Synthetic  

representation 

Measure of 

dispersion 

Statistical test Graphical  

representation 

Notes 

Honey bee Morphometric 

variables (e.g.  

fore-wing angles) 

Measures 

related to 

body size. 

Other data can 

be included 

here such as, 

for example, 

cuticular 

hydrocarbons 

Taxonomic studies Average Standard 

deviation 

Parametric tests 

such as ANOVA. 

Multivariate 

analysis such as 

PCA and DA 

Bar charts for 

single variables, 

scatterplots for 

PC, DA 

Please note 

that some 

morphometric 

data are 

ratios;  

consider 

possible 

deviations 

from normality 

Physiological  

parameters (e.g. 

concentration of a 

certain compound 

in the  

haemolymph) 

Measures 

related to the 

functioning of 

honey bee 

systems 

  Average Standard 

deviation 

  Bar charts or lines   

Survival                 Median     Range     Kaplan Meyer 

Cox hazard     

Bar charts or lines 

scatterplots     

      

Pathogens 

(e.g. DWV, 

Nosema) 

Prevalence Proportion of 

infected  

individuals 

Epidemiological  

studies 

Average Standard 

deviation 

can be used 

but transfor-

mation is 

necessary 

due to non-

normal distri-

bution 

Fisher exact 

solution or Chi 

square according 

to sample size 

Bar charts, pie 

charts 

  

Infection level     Number of 

pathogens 

(e.g. viral 

particles)     

Epidemiological  

studies, 

studies on bee-

parasite interaction     

Average           Parametric tests 

(e.g. t test/

ANOVA) can be 

used after log 

transformation 

otherwise non 

parametric tests 

can be used 

(e.g. Mann-

Whitney/Kruskal-

Wallis)     

    

Parasites 

(e.g. Varroa 

destructor) 

Fertility Proportion of 

reproducing 

females 

Factors of tolerance, 

biology of parasites 

Average Range Fisher exact 

solution or chi 

square according 

to sample size 

    

Fecundity Number of 

offspring per 

female 

Factors of tolerance, 

biology of parasites 

Average Standard 

deviation 

      

Table 5. Guideline to statistical analyses in honey bee research including examples/ suggestions for tests and graphical representation. Blank 

fields indicate that a wide variety of options are possible and all have pros and cons. 



GLMMs are a superset of linear models, they allow for the dependent 

variable to be samples from non-normal distributions (allowed 

distributions have to be members of the one and two parameter 

exponential distribution family; this includes the normal distribution, 

but also many others).  For distributions other than the normal, the 

statistical model produces heterogeneous variances, which is a 

desired result if they match the heterogeneous variances seen in the 

dependent variable. The ‘generalised’ part of GLMM means that, 

unlike in linear regression, the experimenter can choose the kind of 

distribution they believe underlies the process generating their data. 

The ‘mixed’ part of GLMM allows for random effects and some degree 

of non-independence among observations. Ultimately, this level of 

flexibility within GLMM approaches allows a researcher to apply more 

rigorous, but biologically more realistic, statistical models to their 

data.   

One pays a price for this advantage. The basic one is that the 

state of statistical knowledge in this area, especially computational 

issues, lags behind that for models based on the normal distribution.  

This translates into software that is buggy, which can result in many 

kinds of model estimation problems. Also, there are now far more 

choices to be made, such as which estimation algorithm to use (e.g. 

the Laplace and quadrature methods do not allow for correlation 

among observations), and which link function to use. The link function 

“links” the data scale to the model scale (Table 4). For example, if 

dependent variable is assumed to be generated by a Poisson process, 

the typical link function is the log, i.e. log (E (μ)) = Xβ + ZU; in 

words, the natural log of the expected value of the mean is modelled 

as a sum of fixed and random effects). Tests are based on asymptotic 

behaviours of various quantities, which can give quite biased results 

for small samples. One is simultaneously working on two scales:  the 

data scale and the model scale; the two are linked, but model 

estimates and hypothesis tests are done on the model scale, and so 

are less easily interpretable (i.e. a change in unit value of a predictor 

variable has different effects on the data scale depending on whether 

one is looking at low values or high values). One parameter and two 

parameter members of the exponential family have to be handled 

quite differently.  

Over-dispersion (see section 5.2.3.) cannot be handled using a 

quasi-likelihood approach (e.g. using a quasi-binomial distribution); 

instead, appropriate random effects need to be added (e.g. one for 

every observation), which can lead to models with many parameters 

(Note: Over-dispersion means that one has a greater variability than 

expected based on the theoretical statistical distribution; for example the 

expected variance of a Poisson distribution is its mean - if the observed 

variance is larger than the estimated mean, then there is over-

dispersion). For some one-parameter members of the exponential 

distribution (e.g. Poisson, binomial), one can try the analogous two-

parameter member (e.g. for a Poisson distribution, it is the negative 

binomial distribution; for the binomial it is the beta-binomial). Model 
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diagnosis is in its infancy. While we encourage researchers to explore 

the use of these models, we also caution that considerable training is 

necessary for both the understanding of the theoretical underpinnings 

of these models and for using the software. A recent book using 

GLMM methodology is Stroup (2013), which developed from 

experience with researchers in agriculture and covering both analyses 

and design of experiments. He discusses in detail what we can only 

allude to superficially; a shortcoming is that the worked examples only 

use the SAS software. 

 

5.2.1. General advice for using GLMMs 

If the response variable to be measured (i.e. the phenotype of interest 

that may change with treatment) is a quantitative or a qualitative (i.e. 

yes-diseased/no-not diseased) trait and the experiment is hierarchical 

(e.g. bees in cages, cages from colonies, colonies from locations), 

repeated over years, or has some other random effects, then a 

generalised linear mixed model (GLMM; as provided in the statistical 

software R, Minitab, or SAS) can be used to analyse the results. The 

treatment (control, Nosema, black queen cell virus) is a ‘fixed effect’ 

parameter (Crawley, 2005; Bolker et al., 2009). Several fixed and 

random effect parameters can be estimated in the same statistical 

model. The distinction between what is a fixed or a random effect can 

be difficult to make because it can be highly context-dependent, but 

in most experiments it should be obvious. To help clarify the 

distinction between the two, Crawley (2013) suggests that fixed 

effects influence the mean of your response variable and random 

effects influence the variance or correlation structure of your response 

variable, or is a restriction on randomisation (e.g. a block effect). A 

list of fixed effects would include: treatment, caste, wet vs. dry, light 

vs. shade, high vs. low, etc. i.e. treatments imposed by the researcher 

or inherent characteristics of the subjects (e.g. age). A list of random 

effects would include: cage, colony, apiary, region, genotype (if 

genotypes were sampled at random, not if the design was to compare 

two or more specific genotypes), block within a field, plot, subject 

measured repeatedly.  

 

Example:  

The experimenter must consider the structure of the GLMM by 

addressing two questions, as follows:  

 

 Which underlying distribution? 

Gaussian, useful for data where one expects residuals to 

follow a ‘normal’ distribution 

Poisson, useful for count data (e.g. number of mites per bee) 

Binomial, useful for data on proportions based on counts (y 

out of n) or binary data 

Gamma, useful for data showing a constant coefficient of 

variation 

file://TONY-GRUBA/Sharing%20Folder/JAR%2052%20(4)%20Beebook%20part%202/From%20NC/12181VD/12181VD%20revised.docx#_ENREF_15#_ENREF_15
file://TONY-GRUBA/Sharing%20Folder/JAR%2052%20(4)%20Beebook%20part%202/From%20NC/12181VD/12181VD%20revised.docx#_ENREF_6#_ENREF_6
file://TONY-GRUBA/Sharing%20Folder/JAR%2052%20(4)%20Beebook%20part%202/From%20NC/12181VD/12181VD%20revised.docx#_ENREF_16#_ENREF_16


 What link function to use?  

The link function maps the expected values of the data, 

conditioned on the random effects, to the linear predictor. 

Again, this means that the linear predictor and data reside on 

different scales. Canonical link functions are the most 

commonly used link functions associated with each ‘family’ of 

distributions (Table 4). The term “canonical” refers to the 

form taken of one of the parameters in the mathematical 

definition of each distribution. 

 

If two or more experimental cages used in the same treatment 

group are drawn from the same colony of honey bees (Table 6), then 

a GLMM with ‘source colony’ as a random effect parameter should 

also be included, as described above. This random effect accounts for 

the hierarchical experimental design whereby, for the same treatment 

level, variation between two cages of honey bees drawn from the same 

colony may not be the same as the variation between two cages drawn 

from two separate colonies. This statistical approach can account for 

the problem of pseudo-replication in the experimental design.  

Finally, if the factor ‘cage’ and ‘source colony’ are not significant, 

the experimenter may be tempted to treat individual bees from the 

same cage as independent samples; i.e. ignore ‘cage’. However, 

individual bees drawn from the same cage might not truly be 

independent samples and therefore it would inflate the degrees of 

freedom to treat individual bees and individual replicates. Because 

there are currently no good tests to determine if a random effect is 

‘significant’, we suggest retaining any random effects that place 

restrictions on randomisation - cage and source colony are two such 

examples - even if variance estimates are small. This point requires 

further attention by statisticians. The experimenter should consider 

using a nested experimental design in which ‘individual bee’ is nested 

within a random effect, ‘cage’, as presented above (see section 5.). 

 

5.2.2. GLMM where the response variable is mortality 

If survival of honey bees is the response variable of interest, then 

each cage should contain a minimum of 30 bees so as to provide a  

more robust estimate of their survival function. A typical survival 

analysis then needs to be undertaken on the data, e.g. the non-

parametric Kaplan-Meier survival analysis for ‘censored’ data (so-called 

right-censored data in which bees are sampled from the cage during 

the experiment) or the semi-parametric Cox proportional hazards model 

(Cox model) for analysing effects of two or more ‘covariates’, or predictor 

variables such as N. ceranae or black queen cell virus (Collett, 2003; 

Zuur et al., 2009; Hendriksma et al., 2011). Note: these models do 

not only allow for random effects, if the design includes random 

effects then a GLMM (see section 5.2.) could be an alternative 

(including some function of time is a predictor variable in the GLMM). 

 

5.2.3. Over-dispersion in GLMM 

Over-dispersion is “the polite statistician’s version of Murphy’s law: if 

something can go wrong, it will” (Crawley, 2013).  It is particularly 

relevant when working with count or proportion data where variation 

of a response variable does not strictly conform to the Poisson or 

binomial distribution, respectively. Fundamentally, over-dispersion 

causes poor model fitting where the difference between observed and 

predicted values from the tested model are larger than what would be 

predicted by the error structure. To identify possible over-dispersion 

in the data for a given model, divide the deviance (−2 times the log-

likelihood ratio of the reduced model, e.g. a model with only a term 

for the intercept, compared to the full model; see McCullagh and 

Nelder,1989) by its degrees of freedom: this is called the dispersion 

parameter. If the deviance is reasonably close to the degrees of 

freedom (i.e. the dispersion or scale parameter = 1) then evidence of 

over-dispersion is lacking. 
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Treatment Colony 

  1 2 3 4 5 6 7 8 9 

N. ceranae & 

BQCV 

T1_1†, 

T1_2 

T2_1, 

T2_2 

T3_1, 

T3_2 

T4_1, 

T4_2 

T5_1, 

T5_2 

T6_1, 

T6_2 

T7_1, 

T7_2 

T8_1, 

T8_2 

T9_1, 

T9_2 

control 

  

C1_1, 

C1_2 

C2_1, 

C2_2 

C3_1, 

C3_2 

C4_1, 

C4_2 

C5_1, 

C5_2 

C6_1, 

C6_2 

C7_1, 

C7_2 

C8_1, 

C8_2 

C9_1, 

C9_2 

Table 6. Experimental design for studying the impact of Nosema ceranae and black queen cell virus (BQCV) on caged honey bees. †Notation 

represents individual cages (Treatment, Colony 1, Cage 1 = T1_1; and Control, Colony 1, Cage 1 = C1_1), each containing equal number of 

honey bees (e.g. 30) exposed to the same conditions (except experimental treatment differences). Two replicate cages within treatments 

drawn from the same colony are displayed (T1_1 and T1_2), and more could be used (T1_3, T1_4, etc.). Additional control colonies would 

then also be required. ‘Colony’ should be used as a random effect in such cases. But, it is statistically more powerful to maximise inter- as 

opposed to intra-colony replication; that is, favour the use of replicate cages between colonies, rather than repeated sets of cages per treat-

ment drawn from the same colony. Thus we recommend one set of treatment and control cages per colony of source honey bees rather than 

repeated sets of cages per treatment and control drawn from a single colony i.e. T1_1, T2_1, T3_1 …. T9_1 and C1_1, C2_1, C3_1 …. C9_1 

would be a far superior design compared to T1_1, T1_2, T1_3 …. T1_9 and C1_1, C1_2, C1_3 …. C1_9.  
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Causes of over-dispersion can be apparent or real. Apparent over-

dispersion is due to model misspecification, i.e. missing covariates or 

interactions, outliers in the response variable, non-linear effects of 

covariates entered as linear effects, the wrong link function, etc. Real  

over-dispersion occurs when model misspecifications can be ruled out, 

and variation in the data is real due to too many zeros, clustering of 

observations, or correlation between observations (Zuur et al., 2009).  

Solutions to over-dispersion can include: i) adding covariates or 

interactions, ii) including individual-level random effects, e.g. using 

bee as a random effect, where multiple bees are observed per cage, 

iii) using alternative distributions: if there is no random effect included 

in the model consider quasi-binomial and quasi-Poisson;  if there are, 

consider replacing Poisson with negative-binomial, and iv) using a 

zero-inflated GLMM (a model that allows for numerous zeros in your 

dataset, the frequency of the number zero is inflated) if appropriate. 

Over-dispersion cannot occur for normally distributed response 

variables because the variance is estimated independently from the 

mean.  However, residuals often have “heavy tails”, i.e. more outlying 

observations than expected for a normal distribution, which 

nevertheless can be addressed by some software packages. 

 

5.3. Accounting for multiple comparisons 

Thus far, we have assumed that we are investigating two categories 

of an explanatory variable or experimental treatment (i.e. comparing 

a treatment group with a control group). However, the objective may 

instead be to compare multiple levels of an explanatory variable (e.g. 

different concentrations of a pesticide) or multiple independent kinds 

of the same sort of explanatory variable (e.g. competing manufacturers 

of protein substitutes). In addition, one may be interested in testing 

multiple explanatory variables at the same time (e.g. effects of three 

different humidity levels and honey bee age on susceptibility to the 

tracheal mite Acarapis woodi). More complex statistical models 

warrant increased sample sizes for all treatments. Consider the case 

where one has one control and one treatment group; there is a single 

comparison possible. Yet if one has one control and 9 treatments 

groups, there are 9 + 8 +…+ 1 = 55 possible comparisons. If one 

rigorously follows the cut-off of P = 0.05, one could obtain 0.05 * 55 

= 2.8 significant results by chance or in other words the probability of 

at least one significant by chance alone is 1 – 0.9555 = 0.9405, so one 

is likely to incorrectly declare significance at least once (in general, 

5% of statistical results will have p > 0.05 if there are no true 

differences among treatments, this is what setting α = 0.05 

represents). Post hoc tests or a posteriori testing, such as Bonferroni 

corrections, attempt to account for this excessive testing, but in so 

doing can become very conservative, and potentially significant results 

may be overlooked (i.e. correctly control for Type I error, but have 

inflated Type II errors; Rothman, 1990; Nakagawa, 2004). Less 

conservative corrections, such as the False Discovery Rate, are now 

typically favoured as they represent a balance between controlling for 
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Type I and Type II errors (Benjamini and Hochberg, 1995). Other 

ways to avoid or minimise this problem include increasing sample size 

and simplifying experimental design by reducing the number of 

treatments and variables. 

 

5.4. Principal components to reduce the number of 

explanatory variables 

With an increasing number of explanatory variables (related or not-

related, similar or dissimilar units) in one experiment, multivariate 

statistics may be of interest. Multivariate statistics are widely used in 

ecology (Leps and Smilauer, 2003), but less often in bee research. 

Multivariate statistics can be used to reduce the number of response 

variables without losing information in the response variables 

(van Dooremalen and Ellers, 2010), or to reduce the number of 

explanatory variables (especially valuable if they are correlated). A 

Principle Component Analysis (PCA) can be used to examine, for 

example, morphometric or physiological variables (such as protein 

content of different bee body parts or several volatile compounds in 

the head space of bee brood cells). The PCA is usually used to obtain 

only the first principal component that forms one new PC variable (the 

axis explaining most variation in your variables). The correlations 

between the original variables and the new PC variable will show the 

relative variation explained by the original variables compared to each 

other and their reciprocal correlation. The new PC variable can then 

be used to investigate effects of different treatments (and/or covariates) 

using statistics as explained above in section 5. For an example in 

springtails see van Dooremalen et al. (2011), or in host-parasite 

interactions see Nash et al. (2008). Note that the new PC variables 

are uncorrelated with each other, which improves their statistical 

properties. Unfortunately, it is also easy to lose track of what they 

represent or how to interpret them. However, by reducing dimensionality 

and dealing with uncorrelated variables one can transform a data set 

with a great many explanatory and response variables into one with 

only a few of each, and ones which capture most of the variability 

(i.e. the underlying processes) in the data set. Related procedures are 

factor analysis, partial least squares, non-metric multidimensional 

scaling (NMDS), and PC regression. 

 

5.5. Robust statistics 

Robust statistics were developed because empirical data that 

considered samples from normal distributions often displayed clearly 

non-normal characteristics, which invalidates the analyses if one 

assumes normality. They are usually introduced early on in discussions 

of measures of central tendency. For example, medians are far more 

resistant to the influence of outliers (observations that are deemed to 

deviate for reasons that may include measurement error, mistakes in 

data entry, etc.) than are means, so the former are considered more 

robust. Even a small number of outliers (as few as one) may adversely 

affect a mean, whereas a median can be resistant when up to 50% of  
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observations are outliers. On the other hand, screening for outliers for 

removal may be subjective and difficult for highly structured data, 

where a response variable may be functionally related to many 

independent variables. If “outliers” are removed, resulting variance 

estimates are often too small, resulting in overly liberal testing  

(i.e. p values are too small). 

What are the alternatives when one cannot assume that data are 

generated by typical parametric models (e.g. normal, Poisson, binomial 

distributions)? This may be a result of contamination (e.g. most of the 

data comes from a normal distribution with mean μ and variance σ1
2  

but a small percentage comes from a normal distribution with mean μ 

and variance σ2
2, where σ2

2 >> σ1
2), a symmetric distribution with 

heavy tails, such as a t distribution with few degrees of freedom, or 

some highly skewed distribution (especially common when there is a 

hard limit, such as no negative values, typical of count data and also 

the results of analytic procedures estimation; e.g. titres). Robust 

statistics are generally applicable when a sampling distribution from 

which data are drawn is symmetric. “Non-parametric” statistics are 

typically based on ordering observations by their magnitude, and are 

thus more general, but have lower power than either typical 

parametric models or robust statistical models. However, robust 

statistics never “caught on” to any great degree in the biological 

sciences; they should be used far more often (perhaps in most cases 

where the normal distribution is assumed). 

Most statistics packages have some procedures based on robust 

statistics; R has particularly good representation (e.g. the MASS 

package). All typical statistical models (e.g. regression, ANOVA, 

multivariate procedures) have counterparts using robust statistics. 

Estimating these models used to be considered difficult (involving 

iterative solutions, maximisation, etc.), but these models are now 

quickly estimated. The generalised linear class of models (GLM) has 

some overlap with robust statistics, because one can base models on, 

e.g. heavy-tailed distributions in some software, but the approach is 

different. In general, robust statistics try to diminish effects of 

“influential” observations (i.e. outliers). GLMs, once a sampling 

distribution is specified (theoretical sampling distributions include 

highly skewed or heavy-tailed ones, though what is actually available 

depends on the software package) consider all observations to be 

legitimate samples from that distribution. We recommend analysing 

data in several different ways if possible. If they all agree, then one 

might choose the analysis which best matches the theory (the sampling 

distribution best reflecting our knowledge of the underlying process) of 

how the data arose. When methods disagree, one must then determine 

why they differ and make an educated choice on which to use. For 

example, if assuming a normal distribution results in different confidence 

limits around means than those obtained using robust statistics, it is 

likely that there is serious contamination from outliers that is ignored by 

assuming a normal distribution. A recent reference on robust statistics is 

Maronna et al. (2006), while the classic one is Huber (1981). 
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5.6. Resampling techniques 

Statistical methodology has benefited enormously from fast and 

ubiquitous computing power, with the two largest beneficiaries being 

methods that rely on numerical techniques, such as estimating 

parameters in GLMMs, and methods that rely on sampling, either from 

known distributions (such as most Bayesian methods, often called 

“Monte-Carlo” methods) or from the data (resampling or “bootstrapping”). 

Resampling techniques are essentially non-parametric, the only 

assumption is that the data are representative of the population you 

want to make inferences from. The data set must also be large 

enough to resample from, following the rules stated earlier for sample 

sizes for parametric models, (i.e. at least 10 observations per 

“parameter”, so a difference between two medians would require at 

least 20 observations).   

As a simple example, if we want to estimate a 95% confidence 

interval around a median, based on 30 observations, we can draw 100 

random resampled data sets (with replacement) from the original data 

set, each of size 30, calculate the median for each of these resampled 

data sets, and rank those values. The 95% confidence interval is then 

the interval from the 5th to the 95th calculated median. Even though 

the original data set and the resampled data sets are the same size (n 

= 30), they are likely not identical because we are sampling with 

replacement, meaning that there will be duplicates (or even 

triplicates) of some of the original values in each resampled data set, 

and others will be missing. 

Resampling can be used for statistical testing in a similar way. For 

example, if we want to know if the difference in medians between two 

data sets (each of size 30) is significant at α = 0.05, we could use the 

following approach. Take a random sample (with replacement) of size 

30 from data set 1 and calculate its median, do the same for data set 

2. Subtract the sample 2 median from the sample 1 median and store 

the value. Repeat this until you have 1,000 differences. Rank the 

differences. If the interval between the 50th and 950th difference 

does not contain zero, the difference in medians is statistically 

significant. 

This general method can be applied to many common statistical 

problems, and can be shown to have good power (often better than a 

parametric technique if an underlying assumption of the parametric 

technique is even slightly violated). It can be used for both 

quantitative and qualitative (e.g. categorical) data, for example for 

testing the robustness of phylogenetic trees derived from nucleotide 

or amino acid sequence alignments, and is also useful as an 

independent method to check the results of statistical testing using 

other techniques. It does require either some programming skills or 

use of a statistical package that implements resampling techniques.   

If one writes a program, three parts are required. The first is used 

for creating a sample by extracting objects from the original data set, 

based on their position in the data file, using a random number 

generator. As a simple example, if there are five values, a random 
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number generator (sampling with replacement) might select the 

values in positions (4, 3, 3, 2, 4). Note that some positions are 

repeated, others are missing. That is fine because this process will be 

repeated 10,000 times, and, on average, all data values will have 

equal representation. The second part is used for calculating the 

parameters of interest, for example, the median, and is also run 

10,000 times. More complicated statistics take longer, and that will 

affect how long the program takes to complete. The third part stores 

the results of the second part, and may be a vector of length 10,000 

(or a matrix with 10,000 rows, if several statistics are calculated from 

each resampled data set). Finally, summary statistics or confidence 

intervals are created, based on the third part. For example, if medians 

were calculated, one could calculate 90%, 95%, and 99% confidence 

intervals after ranking the medians and selected appropriate endpoints 

of the intervals. In general, 10,000 resampled data sets are considered 

to be a minimum to use for published results, though 500 are usually 

adequate for preliminary work (and that number is also useful for 

estimating how long it will take 10,000 to run). 

All the major statistical software packages have resampling 

routines, and some rely almost exclusively on it (e.g. PASS, in the 

NCSS statistical software). We recommend the boot package in the R 

software, which is very flexible and allows one to estimate many of 

the quantities of interest for biologists (e.g. differences of means or 

medians, regression parameters). The classic book is Efron and 

Tibshirani (1993); Bradley Efron is the developer of the technique. A 

recent, less technical book is by Good (2013). A related technique is 

“jack-knifing”, where one draws all possible subsamples without 

replacement, typically of size n – 1, where n is the original sample size. 

 

 

6. Presentation and reporting of 

data 

Presentation depends on the data collected and what the authors 

wants to emphasise. For example, to present the mean when one has 

done a non-parametric test is not meaningful, though a median is 

(consider using boxplots). The mean is a valid descriptive representation 

of the location parameter if the distribution is symmetric. The best 

way to summarise descriptively and represent graphically a given data 

set depends on both the empirical distribution of the data and the 

purpose of the statistics and graphs. There are excellent references 

on this topic such as those by Cleveland (1993) and Tufte (2001), 

whereas the classic book by Tukey (1977) has a decidedly statistical 

slant. 

Standard error or Standard deviation - the former indicates 

uncertainty around a calculated mean; the latter is a measurement of 

the variability of the observed data around the mean. We believe that 

the standard deviation is the better metric to convey characteristics of 

the data because the standard error, which is also a function of 
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sample size, can be made arbitrarily small by including more 

observations. 

Presentation of data might be overlaid with statistics one has 

applied, such as regression lines or mean separation letters. If data 

were transformed for the analysis, data on the original scale should 

be presented, but any means fit from a statistical model back-

transformed to the original scale (even though this will create curves 

in a “straight” line model, like a linear regression). Back-transformed 

confidence intervals on means should replace standard error bars.   

 

 

7. Which software to use for 

statistical analyses? 

Statistical programmes, such as the freeware R and its packages, as 

well as other packages such as Minitab, SPSS, and SAS, can handle 

the analyses described in this paper. There are several sites 

comparing the different packages: http://en.wikipedia.org/wiki/

Comparison_of_statistical_packages, 

http://en.wikipedia.org/wiki/List_of_statistical_packages 

Although spreadsheet software has improved and many statistical 

tests are available, they often lack good diagnostics on the model fit 

and checks for the appropriateness of the statistical test. 

 

 

8. Where to find help with 

statistics 

A statistician, preferably with an understanding of biology, remains 

the best solution to get one’s statistics right. Given the importance of 

sample size for analyses, it is important to contact one as early as the 

design stage of an experiment or survey. If your university or institute 

does not offer the service of a statistician, there are freelance 

professionals as well as numerous forums on the internet where 

questions can be posted. Examples of such sites can be found on the 

support sites for R and commercial programmes. Most maths departments 

offer some kind of introduction to basic statistics.   

 

 

9. Conclusion 

Guidelines and the selection of the different methods presented are, 

at least partly, based on experience and we cannot cover all statistical 

methods available, for example we have not discussed resampling 

methods like jackknife in detail (for further reading see Good, 2006). 

More details on designing specific experiments and performing 

statistical analyses on the ensuing data can be found in respective 

chapters of the COLOSS BEEBOOK (e.g. in the toxicology chapter, 

Medrzycki et al., 2013).  
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Experimenters need to use statistical tests to take (or to help take) a 

decision. A statistical analysis can be conducted only if its assumptions 

are met, which largely depends on how the experiment was designed, 

defined during the drafting of the study protocol. Without some effort 

at the a priori conception stage and input from those knowledgeable 

in statistics and/or experimental design, the resulting analyses are 

frequently poor and the conclusions can be biased or flat-out wrong. 

Why spend a year or more collecting data and then realise that, due 

to poor design, it is not suitable for its original purpose: to test the 

hypotheses of interest. The most important point to understand about 

statistics is that one should think about the statistical analysis before 

collecting data or conducting the experiment.  
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