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COMMENTARIES

Comments on predictability and overdifferencing in vigilance sequences
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The degree of predictability in behaviour
sequences is a central ethological question in
many studies. For example, individuals, while
routinely scanning for predators or locations of
conspecifics, may be at a disadvantage if their
scans can be predicted. Two empirical issues arise
in regard to the predictability of these vigilance
sequences, here defined as time series consisting of
durations of sequential inter-scan intervals (ISIs).
First, to what degree are ISI durations predictable
from observations of past ISI durations? Second,
does knowledge of the time spent in the current
interval (time since the previous scan) provide
information useful for predicting how much
longer the current interval will last? Desportes
et al. (1989) refer to unpredictability of ISI dur-
ations based on past ISI durations as sequential
randomness, and unpredictability of the remain-
ing length of an ISI based on knowledge of the
time spent in the current interval as instantaneous
randomness. The first issue relates to time series
(autocorrelation) properties of ISI durations, the
second to the probability distribution of ISI dur-
ations. These two issues are essentially distinct,
both conceptually and statistically. In this paper
we discuss the first issue in reference to a recent
article of Roberts (1994).

In his article, Roberts (1994) examined the first
issue by using time series methods described by
Box & Jenkins (1976) to analyse sequences of ISI
durations in preening sanderlings, Calidris alba.
The first step in this approach is to examine
estimates of autocorrelations. The lag k auto-
correlation is corr(Y,,,, Y,), where Y, denotes the
time series of ISI durations, indexed by ¢. Having
examined estimated autocorrelations for 13 time
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series of ISI durations, Roberts (1994, page 584)
reported that, ‘sequences of ISI durations appear
to be essentially randon’, i.e. uncorrelated. (Fig-
ure 2a of Roberts (1994) gives the autocorrelation
function for a representative sequence of ISI dur-
ations.) The time series analysis should have
stopped at this point, because if there is no
evidence of autocorrelation in the data there is no
need for a time series model. In fact, the goal in
time series modelling is to find a model that
transforms the original time series into an un-
correlated series with mean zero (called a white
noise series). The model that accomplishes this for
Y, is the simple mean model: ‘

Y=pte, )

where p is the mean and e, is the white noise series.

Roberts (1994), however, differenced his time
series and performed various analyses on the
differenced series, W,=Y, — Y, _,;. Roberts (1994)
stated that differencing was performed to ‘remove
the effects of long term trends in the sequences’
(page 581). The nature of such trends is not
specified. Although differencing is a useful tool in
time series modelling, it is a powerful transfor-
mation that should not be used indiscriminately.
Box & Jenkins (1976, Section 6.2.1), suggested
differencing only for time series whose sample
autocorrelations fail to die out rapidly with
increasing lag. Such behaviour of autocorrelations
reflects non-stationarity in the series that can
arise either from stochastic trends that require
differencing, or from deterministic polynomial
trends (e.g. the linear trend o+ pf), which can also
be rendered stationary by differencing. A time
series is stationary if its mean E(Y,) and variance
var(Y,) are constant over time ¢, and if its theor-
etical autocorrelations corr(Y,,Y, ;) depend only
on lag k& and not on ¢ Differencing is clearly
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inappropriate for time series that give no evidence
of autocorrelation, such as the time series whose
autocorrelation function is given in Figure 2a of
Roberts (1994).

Inducing autocorrelation by unnecessary differ-
encing will not extract additional information
from a time series. In fact, the results obtained by
Roberts from analyses of the differenced time
series of ISI durations are purely artefacts of the
unnecessary differencing, and admit no meaningful
interpretation. We demonstrate this for results that
Roberts (1994) obtained from fitting autoregres-
sive (AR) models to his differenced ISI durations,
by showing that his results are very close to what
would be expected from fitting AR models to a
differenced white noise series. Analogous analyses
could be presented to show that the other results
obtained by Roberts (1994) are also what would be
expected from a differenced white noise series.

First, note that if Y, follows the mean model
(1), then in differencing ¥, to W,=Y,— Y,_,, the
mean i drops out and the model followed by the
differenced series W, is

W,i=e,—e,_,. #))

Because successive observations W, and W,
involve an overlap of e, the W, series will be
autocorrelated at lag one. That is, cov(W,,.,, W)=
cov(e,,, —e.e,—e,_1)= —covie,e)= —var(e,).
Observations of W, more than one time point
apart involve no overlap of e, and hence are
uncorrelated.

Model (2) is actually a special case of the
first-order moving-average (MA(1)) model dis-
cussed by Box & Jenkins (1976, Section 3.3). The
general pattern of autocorrelations for MA(1)
models are a non-zero value at lag 1, and zero at
lags 2, 3, ... For the particular MA(1) model
given in (2), the theoretical lag 1 autocorrelation,
py=corr(W, (, W), is —%, and p,=p;=---=0 for
lags 2,3, ... (Box & Jenkins 1976, equation 3.3.4).
Estimated autocorrelations from data following
model (2) would be expected to exhibit a similar
pattern. In fact, the estimated autocorrelations for
the representative differenced series given in Fig-
ure 2b of Roberts (1994) show (within estimation
standard errors) just this pattern. For this differ-
enced series, the observed lag 1 autocorrelation is
approximately —0.5, and autocorrelations are
not different from zero at all other lags.

Roberts (1994, Table I), however, presented
results from fitting AR models to the differenced
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duration series. AR models are inappropriate for
these data, since the correct model for the differ-
enced series, given that the original series is uncor-
related, is the MA(1) model given in equation (2).
This particular model will be poorly approxi-
mated by AR models. Nevertheless, we can ask
what results would be expected if AR models are
fitted to a series W, that actually follows the
MA(1) model (2).

The behaviour of autoregressive parameter esti-

‘mates when fitting models to a series that follows

equation (2) can be understood by considering the
Yule-Walker equations (Box & Jenkins 1976,
equation 3.2.6). These equations relate parameters
of an AR model of specified order p to the auto-
correlations at lags 1, . . ., p. If theoretical autocor-
relations py, . . ., p, are known and the true model
is AR(p), then solving the corresponding Yule—
Walker equations yields the AR parameters ¢ ,,
-« ¢ ,. If the true model is not AR(p), then the
solution to the Yule-Walker equations indicates
what the parameter estimates obtained from fitting
an AR(p) model are actually estimating. For the
first order autoregressive model (AR(1)) the lone
Yule-Walker equation is ¢ ,=p,, where ¢ , is the
AR(1) parameter. Thus, for the AR(1) model, the
estimate of ¢ | is estimating the lag 1 sample auto-
correlation (regardless of whether the true model
is actually AR(1)). For a differenced white
noise series, we would thus expect that fitting
AR(1) models would produce estimates of ¢,
approximately equal to p; = — 3 (within estimation
error).

The behaviour of autoregressive parameter esti-
mates when fitting a higher order AR(p) model
(»>1) to a differenced white noise series can be
understood by substituting p; = — 3 and p, = 0 for
k=2, ..., p in the Yule-Walker equations, and
then solving the resulting equations for ¢ 4, ...,
¢ ,. For example, consider the AR(3) model. The
Yule-Walker equations for the AR(3) are

P1=¢ 1 +d,p +d5p,
P2=d 1p;td b 5p;
P3=¢ 1Pt dop +d s,

which, in matrix notation, are

Py 1 p, p; ¢,
p2|={Pt 1 ps ¢,
P3 P2 P 1 P,
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Table I. Comparison of the autoregressive parameters given in the first six sequences of Roberts (1994) (R) with
theoretical values (T) from fitting the same order autoregressive model to an overdifferenced white noise series

Sequence AR (1) AR (2) AR (3) AR (4) AR (5) AR (6) AR (7)
IR -0.81 —0.54 —0.26
1T -0.75 ~0.50 025
2R ~0.63 - 0.61 - 0.50 -038 -0.39
2T -0.83 -0.67 -0.50 -033 -0.17
3R -0.93 -0.89 —0.66 ~0.69 ~0.60 —0.49 -0.35
3T ~0.88 -0.75 -0.63 —0.50 -0.38 —0.25 -0.13
4R -0.73 042 - 043 —-0.27
4T -0.80 ~0.60 —0.40 -0.20
5R -0.97 -0.76 -0.71 -0.59 - 0.66 -0.50
ST - 0.86 -0.71 —0.57 - 043 -0.29 -0.14
6R ~0.80 ~0.50
6T —0.67 -033

Substituting in p;= —3 and p,=p,;=0 gives

-3 1 =3 0\ /d,
0j={-% 1 —3]| o
0 0 -3 1/ \¢,

The solution for ¢ ;, ¢, and ¢ 5 is
-3 0\-1/—4

1 -4 0l=|-
-3 1 0

ORI

1
1
2
0

The interpretation of this result is that if an AR(3)
model is (incorrectly) fitted to a differenced white
noise series as in equation (2), the AR(3) param-
eter estimates will be estimating — 0.75, —0.50
and —0.25. For comparison, the AR(3) param-
eter estimates obtained by Roberts (1994, Table I)
for his first series are — 0.81, —0.54 and — 0.26.

In general, when an AR(p) model is fitted to
an unnecessarily differenced white noise series
(2), the values being estimated by the auto-
regressive parameter estimates dp i b p are
—pl(p+1),...,— U(p+1). For series of the length
Roberts (1994) considered, the estimates by e
b , are subject to substantial error. Given this,
note how closely the values given in Table I in
Roberts (1994) agree with the pattern — p/(p+1),
...,— U(p+1) (see Table I). The AR fitting results
are thus completely consistent with the hypothesis
that the original series are uncorrelated.

A central point of Roberts’ (1994) article seems
to rest on the misconception that differencing the
series of ISI durations accomplishes something
since the differenced series exhibit negative auto-
correlation at lag one, and hence some predictabil-

- ity that is not present in the original series (which

appear uncorrelated). In fact, it should not be
surprising that the differenced series is somewhat
predictable from its past. Having taken N obser-
vations, the first future value of the differenced
series will be Wy, =Yy, — Yy. Since Y, is the
last observed value, this part of Wy, is known,
and hence perfectly predictable. The other part of
Wy1> Ywser, 18 ‘unpredictable’ in that it is un-
correlated with the data through time N. Future
values of the differenced series beyond time N+1
are uncorrelated with available data, since they are
determined exclusively by future values Y, for £>N.

Actually, some care needs to be taken in regard
to interpretations of ‘predictability’ or “‘unpredict-
ability’. The fact that the original time series of ISI
durations appear to be uncorrelated over time
does not necessarily mean that they are unpredict-
able, or that past data are entirely irrelevant to
their prediction. For the mean model (1) the best
prediction of any future value of Y, is the mean ,
which can be estimated by the sample mean Y. It is
in estimating p by Y that past data are used to
form the prediction. The variance of the error in
the prediction of ¥, for the mean model (1) for
any >N, where N is the number of observations,
can be calculated using standard regression
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prediction results (e.g. Draper & Smith 1981,
equation 1.4.11). This is given as

var(Y, — Y)=cX1+1/N), 3)

where 6>=var(Y,). The magnitude of this variance
thus depends on ¢ and on the number of obser-
vations N. Unless N is very small, say N<10, the
dominant factor will be o For non-negative
data, if o is considerably smaller than p, then the
coefficient of variation (CV) for predicted Y, is
small and ISI durations will be fairly predictable
(using the estimated mean). If the CV is large,
then ISI durations will be fairly unpredictable.
Roberts (1994) reported that his 13 ISI dur-
ation time series had means and correspond-
ing standard errors (Y + 6A/N) ranging from
1.51+0.12s to 3.56 £ 0.32s. CVs calculated by
dividing equation (3) by Y cannot be obtained
from this information without knowing the
number of observations N for each series. It is
reported onmly that N is at least 40 and is a
maximum of 69 for the 13 time series. Taking the
two examples cited, and the minimum and maxi-
mum values of N, the CV for the first case would
be between 0.51 (=(O.12\/40\11+1/40)/1.51) for
N=40 and 0.66 for N=69, while for the second
case it would be between 0.58 (N=40) and 0.75
(N=69). Since the CVs in both cases are large, the
ISI durations for these two cases are indeed
largely unpredictable from past duration data.

Conversely, just because a time series is auto-
correlated, even strongly autocorrelated, does not
mean it is predictable from past data. Using an
appropriate time series model for the data, if the
prediction standard errors (Box & Jenkins 1976,
Section 5.1) are large relative to the predictions,
then the series is essentially unpredictable, even
though autocorrelated.
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In his discussion, Roberts (1994) postulated
a behavioural mechanism that could lead to
negative autocorrelation in the differenced ISI
durations. We have shown, however, that the
same numerical (statistical) results would be
expected from unnecessarily differencing a white
noise series. Thus, the data offer no evidence in
support of Roberts’ (1994) postulated mechanism.
This mechanism involves the animal internally
tracking past differenced ISI durations and
using these in determining its future scanning
behaviour, through a mechanism that depends on
a variance, several autoregressive parameters and
an internal random number generator. The
data, in fact, support the much simpler expla-
nation that no internal tracking of past behav-
iour is performed, and the lengths of ISI durations
are random, independently generated from
some probability distribution that might be
characterized by its mean and variance.

We thank two referees for constructive
criticism, especially for helping to emphasize
certain points.
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