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Abstract 
 The posterior predictive distribution (the distribution of data simulated from a model) has 
been used to flag model-data discrepancies in the Bayesian literature, and several approaches 
have been developed.  The approach taken here differs from the others both conceptually and as 
realized.  It works by comparing the "distance" between the data and model (as represented by 
pseudo-data simulated from a model) with "distance" within the model.  The distance within the 
model is calculated by generating pseudo-data from it, using each set of these pseudo-data to re-
estimate the model, and then generating pseudo-data from them, matching the way the original 
data are used to generate pseudo-data.  "Distances" are calculated as the log of sums-of-squares, 
following ranking, and the test from comparing a mean distance to a distribution of mean 
distances.  The power of this method compares favorably with those of standard methods, e.g. t-
tests, but it is more general since it can be used for most models in the GLMM framework, 
whether estimated using traditional or Bayesian methods.  A new kind of plot, where the 
distribution of the ranked pseudo-data is compared to the original data at each ranked datum, is 
useful for determining the region of the data where the model fails. 
 
1. Introduction 
 
 Linear mixed models (LMM's), and in recent years, generalized linear mixed models 
(GLMM's), are finding ever broader applications.  In agriculture, they are used from modeling 
genomic data to data taken on an ecological scale, as well as their traditional role in designs 
using blocking (Gbur et al. 2012).  Diagnostics for these models, especially for GLMM's, has 
lagged behind the developments in the software used to estimate them.  Thus, currently we can 
relatively easily estimate model parameters and their standard errors and find the "best" model 
from a pool of candidate models, say using AIC; the first part of diagnostics (model 
comparisons).  However, there is no guarantee that the best-fitting model is also the appropriate 
one, and with GLMM's there are many components (fixed and random independent variables, 
underlying data distribution, correlated errors, etc.), and thus many ways that the model can be 
'wrong'.  As an aside, we follow Gelman (2007) in assuming that all candidate models are wrong 
in some way and, had we sufficient data and the right diagnostics, this could be demonstrated.  
The goal is to find a reasonable model that produces data like those collected, appears to 
adequately represent the sort of processes we imagine to produce the observed data (i.e. is 
'functionally' correct), and is usable for predictions and inference.  There may not be such a 
model among the candidate models, thus the second part of diagnostics (model criticism) is to 
determine if the best candidate model fills these requirements.  If not, new models need to be 
explored.  For many statistical models, it is not easy to reliably determine whether the best 
candidate model matches the data collected, which requires some kind of goodness-of-fit check.  
Also, some kinds of mismatches are easier to detect than others, and all are easier to detect with 
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larger sample sizes.  In the Bayesian literature, diagnostics informing on data-model mismatches 
makes use of the posterior predictive distribution, essentially asking if discrepancies exist 
between the actual data and the pseudo-data generated from the selected model.   
 This has been implemented in various ways.  Perhaps the simplest is to rank the data and 
individually rank the generated sets of pseudo-data, and see whether the lowest (highest) 
observation from the original data lies in the distribution of lowest (highest) observations of the 
ranked pseudo-data sets (Gelman, et al. 2013), an expanded graphical version (the 'centipede 
plot') is discussed below.  This is an example of a broader technique, termed posterior predictive 
p-values (e.g. Meng 1994), where one compares a parameter set from fitting the model to the 
original data with parameter sets fit to pseudo-data generated from the model through a test 
statistic.  The idea is that a quantity, similar to the p-value used in frequentist statistics, is 
calculated using Pr {T(yp) ≥ (T(y) | y, H0}, where T(y) is a test statistic using the original data, y, 
yp is the sampling distribution of the pseudo-data generated from the model represented as H0; 
that is, yp is conditioned on both the original data and the model selected (selected, in part, using 
the original data).  For the model of fitting a normal distribution to data, the test statistic might 
use the mean and variance estimated using maximum likelihood.  There can be computational 
problems implementing this method, in addition to deciding on the right test statistic(s); it 
becomes more difficult with increased model complexity, and there are also unresolved 
theoretical issues, e.g. those discussed by Bayarri and Berger (1998). 
 Other approaches have been advocated.  Gelman, et al. (2013) suggest an omnibus χ2 like 
measure, based on χ2

i = (yi - E(yp
i))/var(yp

i).  Informal investigations of this measure by us, for 
example to check whether a mismatch was apparent if data generated from a Poisson distribution 
was fit with a normal distribution, were not promising.  Note that generating data from a one-
parameter distribution, then fitting them with a two-parameter distribution is a mismatch that is 
difficult to catch using any general single statistic, though the mismatch was obvious using a 
centipede plot, discussed below.  The minimum posterior predictive loss approach (Gelfand and 
Ghosh 1998), an extension of the L-criterion, is similar to the posterior predictive p-values in 
that estimated parameter values are used explicitly in the calculations.  Gelfand and Ghosh 
(1998) discuss use of a squared error loss, the approach used in this paper, as measure of fit, and 
specifically address GLMMs.  Also mentioned is the importance of a penalty term for over-fit 
models.  The method developed in this paper does not have an explicit penalty term, though 
over-fitting may be obvious because the fit is 'too' good, briefly mentioned below.  The 
conditional predictive ordinate approach (Gelfand 1996) uses cross-validation (a leave-one-out) 
approach, so avoids the issues when re-using data.  We do not have experience with this method. 
 The methods developed in this paper employ ranking.  Ranking the data takes care of 
several problems. It avoids the need to look at groups of observations individually, rather the 
entire data set can be visualized at once.  Also, visualizing data from different kinds of models 
(e.g. regression, ANOVA, GLMM, etc.) is essentially the same.  Weaknesses of the model can 
be easily traced back to regions of the data, such as the model having difficulty with low or high 
values, this may not be obvious using other available diagnostic methods, especially for more 
complicated models that include random effects.  Ranking also takes care of a more subtle issue, 
what the original data are compared to.  When performing model criticism, we want to know if 
the model could have generated data similar to those collected.  The most logical way is to 
compare the original data to data generated by the model, rather than by comparing original data 
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to some parameter (or function of parameters) from the model.  However, that requires that both 
data sets be organized in a similar way, so that like observations are being compared.  While 
ranking the observations does not guarantee that like observations are being compared, if the 
model produces data similar to the original data, ranking should at least roughly align similar 
observations from the two data sets.  Since the model may be missing predictor variables that 
could provide for a better alignment (i.e. within a group, generated pseudo-data may by i.i.d., so 
how should the generated data set be aligned with the original data?), ranking provides a viable 
method for determining how to pair observations from the two data sets without requiring more 
sophisticated statistical models.   
 The paper is organized as follows.  An example of the posterior prediction check for 
lowest (highest) observations is given, then generalized to a graphic for all original data 
observations.  A new statistic is described which allows one to calculate the probability the 
model is likely to have given rise to the actual data, based on calculating "distances" between 
pseudo-data (generated from a model) and the actual data; this can be used as a 'test', for 
example, if the probability is less than 0.05.  Several examples, using published data from a field 
trial and laboratory mosquito data, analyzed within a GLMM framework, are given.  While this 
method (labeled PDT for "predictive distribution test") works both for models developed using 
frequentist and Bayesian approaches, it is perhaps better suited to the former because it relies on 
re-estimating models using pseudo-data, and model estimation takes longer using a Bayesian 
approach.  The scope and number of data sets examined using this method is limited, and 
theoretical justification poorly developed.  However, it is promising in that the PDT worked well 
for all data sets examined, and would conceivably work as well on a much broader set of models 
than those used here.  It has the distinct advantage of not requiring complicated coding, other 
than to simulate data from models and to store the results. 
 
 
2. Example 1: posterior predictive distribution 
 
A sample data set of 50 draws from a N(0,1) distribution are taken.  The model is a simple two 
parameter one, a mean, a variance, with the assumption that the parent population is normally 
distributed.  Bayesian estimates of the two parameters, using rjags (Plummer 2013) in the R 
software (R Core Team 2014), yielded posterior density estimates of the two parameters given in 
Fig. 1, top right panels.  One posterior distribution check advised by Gelman et al. (2013) is to 
determine how likely the extreme values (e.g. lowest) in the actual data would be generated by 
the model.  For this, the data set was ranked and the lowest observation identified (Fig. 1, top left 
panel).  Joint samples from the posterior distributions of means and standard deviations were 
taken, and from each 50 pseudo-data were generated.  Each pseudo-data set was ranked, and the 
lowest value of each used to plot the histogram in Fig. 1, lower left panel, with the original 
lowest value indicated (blue dot).  This original lowest value is squarely in the middle of the 
distribution of pseudo-data lowest values, indicating that the value of the lowest observation 
from the actual data is similar to those generated from this simple model, that is, the model and 
original data are consistent for lowest values.  One could do this for every ranked actual 
observation, lowest to highest, producing Fig. 1, bottom right panel.  In this panel, the 
distribution of the pseudo-data at each rank are depicted in green (mean and 95% credible 
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interval), the blue dots are the superimposed ranked original data.  This kind of plot is useful to 
see if the model misses the data at any of the rankings, and will be referred to as a "centipede 
plot", due to its obvious resemblance to that arthropod class.  Since all the ranked original values 
lie well within the 95% credible interval of their respective rankings, based on this diagnostic the 
model used is consistent with these original data. 
 
  

 
 
 
Figure 1.  Top left panel:  ranked "original" data generated from a N(0, 1) distribution.  Top right 
panels:  distributions of posterior estimates for means and standard deviations (every 100th 
sample in the chain following the burn-in period).  Bottom left panel:  distribution of lowest 
values from pseudo-data generated from a normal distribution with mean and standard deviation 
sampled from the posterior distribution of parameter estimates.  Bottom right panel:  depiction of 
all rankings from the pseudo-data, from lowest to highest, with a 95% credible interval on each 
ranking (green vertical bar) and mean (green dot), original data superimposed with a blue dot. 
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2. PDT 
 
 While the visual inspection using a centipede plot is useful (especially for determining 
where in the data set the model fails, demonstrated below), a statistic that indicates how likely 
the candidate model would have generated the observed data is also needed.  Toward that goal, a 
distance measure is proposed based on comparing pseudo-data generated by the model to the 
original data with pseudo-data generated by the model to other pseudo-data generated by the 
model; in short a model-data distance compared to a model-model distance, where pseudo-data is 
a proxy for the model.  After investigating a number of ways to do this, the one described below 
was best in that it produces a test statistic that works in both the frequentist and Bayesian 
paradigms, works for all models examined (various GLMM's), produces the expected results 
when the true model is known (i.e. when a known model was used to generate the "original" 
data), that is, the nominal α value is preserved, and the method has reasonably good power to 
detect discrepancies between the model and the data, especially considering that the PDT can be 
used for most parametric models and statistical distributions.  The key is that the within-model 
distances are computed the same way as the data-model distance.   
 Let y be the original data vector following ranking.  Let yp1, …, ypn be vectors of ranked 
pseudo-data generated by the candidate model fit to y, each the same length as y, that is, for each 
observation in y, predict a new observation.  For i = 1, …, n, calculate log (Σ (y – ypi)2), this is 
the log of a sum-of-squares. Take the mean (m) of these values.  The log transformation helps 
create a symmetric distribution (so the mean is a meaningful quantity), and using a sufficiently 
large number for n (examples in this paper were mostly done with n = 300) ensures that one has 
a good representation of possible values generated by the model.  The value, m, represents the 
distance between the original data and the candidate model.   
 A similar procedure is needed for the within-model comparisons, the result will serve as a 
reference distribution for deciding whether m is excessively large.  It is constructed in the 
following manner.  For i = 1, …, n, create a vector of pseudo-data (these can be the same vectors 
used in the comparison with the original data).  For each one (ypi ), fit the same model (i.e. the 
candidate model chosen based on the original data; the model form is the same but the 
parameters are re-estimated) and from it generate j = 1, …, n additional sets of pseudo-data, 
denoted as yppij, the double superscript indicating that this vector of pseudo-data is twice 
removed from the original data set.  For each i, following ranking, calculate log (Σ (ypi – yppij)2), j 
= 1, …, n.  Take the mean of the j logs of sums-of-squares. Over all i's, this operation produces n 
means (a mean for each initial vector of pseudo-data, ypi).  Locate the 95th quantile of the n 
means and check if m exceeds it.  For n = 300, this requires 300 + 1 = 301 model estimations, 
which generally does not take long for frequentist models but can be time consuming in the 
Bayesian framework.  Generating pseudo-data from a model and calculating log (Σ (ypi – yppij)2) 
takes little computer time. 
 
3. Example 2:  PDT example for normal distribution and power 
  
 To give a simple illustration of the PDT, a data set of 30 observations was generated from 
a N(1.5, 1) and fit to a N(1, 1) model, i.e. the data and model purposely do not match.  Using the 
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method described above and n = 300, m was calculated as 3.59.  For the within model 
comparison, a histogram of the 300 means is given in Fig. 2, with the 95% quantile calculated as 
2.47, less than m = 3.59.  Thus the test statistic finds the probability that the model could have 
generated the data is extremely low (actually, none of the within model means was even close to 
m).     
 

 
 
 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2.  Distribution of the means of within-model comparisons where the model pseudo-data 
was generated from a N(1, 1) distribution.  The mean of the data-model comparisons is 3.59, 
indicated by an arrow on the right, and well above 2.47, the 95% quantile from the means of 
within-model comparisons, indicating that data and model do not match. 
 
 
 Power for the PDT for normally distributed data generated in a similar way to the 
example just described (data from N(1.5, 1), model from N(1, 1)) was calculated empirically for 
sample sizes ranging from 3 to 30, using both frequentist and Bayesian methods.  Results are 
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given in Fig. 3, where the left panel gives the power under the Bayesian and the right under the 
frequentist paradigm.  A reference power curve for a t-test is also plotted.  The t-test is more 
powerful, not surprising because, unlike the method developed in this paper, it assumes the 
underlying distribution of the data is known to be normal.  Note that the problems for very small 
samples sizes using the frequentist estimates, giving unrealistically high power, are not seen 
using Bayesian estimates.  As the two parameters for this distribution are easy to calculate in 
both paradigms, there is little difference in the power curves.  The curve for the frequentist 
estimates was calculated with fewer samples, n = 300 for frequentist versus 1000 for Bayesian, 
so are less smooth.   
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Figure 3.  Empirical power curves for lack-of-fit for the PDT described in this paper, where data 
are generated from a N(1.5, 1) distribution and fit assuming the distribution is N(1, 1).  Parameter 
estimates were made using Bayesian methods (left) and frequentist methods (right).  The 
reference power curve for a t-test is given in red. 
 
4. Example 3:  linear mixed model 
 
 The data for this example were made available in the R agridat package (Wright 2013), 
and their analysis first described in Shafii and Price (1998).  The dependent variable is rapeseed 
yield, the independent variables year (1987-1989), location (14 levels), genotype (6 levels), with 
three replications per 3-factor combination.  Rather than use the Shafii and Price (1998) analysis, 
where the data were used to develop an AMMI model, two models were fit, a LM (linear model), 
and a LMM (linear mixed model).  Zero values were removed, leaving 644 observations, and 
yield was transformed by raising it to the 0.35 power (this removed the positive relationship 
between the mean and variance).  The LMM was fit using the R lme4 package (Bates et al. 
2014), with random effects location, location by genotype, and location by year; other varibles 
were considered fixed (including all two-way interactions of fixed effects).   
 First, a centipede plot was constructed for the LM (Fig. 4, left panel).  Since there are 
many observations, only a sample of 50 are shown, and the distribution at each rank is depicted 
by box and whiskers symbols, rather than with a vertical line giving the 95% confidence interval.  
With the data spread out over such a large range, it is difficult to see where the model fails from 
this plot; a more informative plot can be constructed by subtracting out the data value at each 
rank, as in Fig. 4, right panel.  It appears that the model underestimates values for low yields and 
some high yields, and overestimates them for average yields.  The results from using the PDT are 
given in Fig. 5, the data-model mean is greater than the distribution of model-model means; it is 
unlikely that the LM could have generated this data set.   
 

90



 
Figure 4.  Centipede plots for the Shafii and Price data set, fit with a linear model.  Left panel: 
random selection of 50 of the 644 observations used in modeling.  Right panel: same sample of 
50 observations, but with the observation value subtracted out (thus, the depicted "original data", 
connected blue dots, are all values of zero). 
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Figure 5.  Results from using the PDT to assess the probability that LM could produce these 
data.  Since the mean from the model-data comparison is far larger (right-most arrow) than the 
95% quantile from the distribution of means of model-model comparisons, it is unlikely that this 
data set could have been produced by this model.  
 
 The LMM model appears to be more reasonable, based on the PDT (Figs. 6 and 7).  The 
basic difference is that by relabeling location and its interactions with other independent 
variables as random effects, considerably more variability is introduced into the generated 
pseudo-data; the ranked data generally lie between the first and third quartiles of the distribution 
of pseudo-data at each rank.  Note that levels of random effects are simulated as well, not held 
fixed, when data are generated.  Models estimated using the lme4 package, when used to 
generate data (using the simulate function in R), have an option that allows one to hold the 
random effects fixed when generating data from the model; this would result in generated data 
with much lower variability, similar to that coming from a fixed model. 
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Figure 6.  Centipede plots for the Shafii and Price data set, fit with a linear mixed model.  Left 
panel: random selection of 50 of the 644 observations used in modeling.  Right panel: same 
sample of 50 observations, but with the observation value subtracted out (thus, the depicted 
"original data" are all values of zero). 
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Figure 7.  Results from using the PDT to assess the probability that the LMM could produce 
these data.  The mean from the model-data comparison is well within (arrow in center of plot) 
the distribution of means of model-model comparisons indicating that this data set is similar to 
generated data sets produced by this model.  
 
5. Example 4:  Mosquito data from wind tunnel experiments 
 
 A number of experiments have been conducted on mosquitoes in wind tunnels aimed at 
understanding their movement patterns to attractants and subsequent feeding behavior, in an 
effort to develop better repellents.  The data in this example were analyzed in Klun et al. (2013).  
The set-up of the wind tunnel is given in Fig. 8.  Data were taken on the number of mosquitoes 
(out of 20) that left the release cannister under three conditions; human breath, human breath 
scrubbed of CO2, and nothing added to the incoming air.  There were 10 replicates of each 
condition.  For this analysis, the underlying distribution is assumed to be binomial, whose 
parameter changes with condition.  Data were also taken on the number of probes recorded 
(aggregated over all mosquitoes on the membranes); for this an underlying Poisson distribution 
is assumed.  Data were also taken on the number feeding (binomial), which will not be discussed 
here.   
 The distribution of the proportions leaving the cannister by condition is given in Fig. 9.  
Air mixed with human breath had the highest proportions.  The data, especially for the scrubbed 
human breath condition, appears over-dispersed when compared to a binomial distribution.  This 
is consistent with results from applying the PDT to two models, a GLM (generalized linear 
model) and a GLMM, the latter including a random trial effect.  For the GLM, the mean of the 
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distribution of log (sum-of-squares) for the data-model comparison is greater than the 95% 
quantile for the distribution representing model-model comparisons, i.e. the data and model do 
not match.  For the GLMM, the data-model comparison is in the middle of the distribution of 
model-model comparisons, well below the 95% quantile, i.e. the data and model match.  The 
centipede graph (not shown) shows no unusual patterns.  
  
 

 
 
 
Figure 8.  Left panel:  wind tunnel.  Air enters from the left and can be mixed with human breath 
or other gasses.  Mosquitoes are released from the cannister at the right side of the tunnel 
(enlarged in the upper right panel).  If they fly up-wind (to the left), they will encounter a feeding 
platform with warmed nutrient fluid under a membrane in several wells (one well is enlarged in 
the lower right panel).  They may probe (pierce) the membrane and imbibe the nutrient liquid. 
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Figure 9.  The proportion of mosquitoes that exited the cannister in each trial under the three 
breath conditions. 
 
 The distribution of the number of probes across the three breath conditions is given in 
Fig. 10.  The number of probes was greatest for air mixed with human breath and uniformly low 
for the other two conditions.  There is no indication of over-dispersion, in fact the data appear 
under-dispersed.  A GLM with fixed effects alone appears adequate using the PDT, the data-
model comparison mean is far smaller than the 95% quantile.  In fact, only about 8% of the 
distribution of model-model comparisons was below the data-model comparison mean, 
suggesting that the data are under-dispersed (which may conceptually be a kind of over-fitting in 
the sense that the data more closely cluster around their means than is specified by the model).  
A centipede plot did not reveal unusual patterns, but clearly shows the increasing variability of 
the generated data with higher rankings, as expected for Poisson distributed data (Fig. 11). 
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Figure 10.  The total number of probes by mosquitoes on feeding stations in each trial for each 
condition. 
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Figure 11.  Centipede plot for the number of probes by mosquitoes.  The data generated from the 
fitted GLM is represented by the box and whisker symbols, the original data superimposed with 
connected blue dots. 
 
6. Conclusions 
 
 A diagnostic based on comparing two distances, a distance between the original data and 
that generated by a candidate model and a within model distance, comparing sets of generated 
data from the candidate model with each other, was developed to determine the probability the 
data could have arisen from the candidate model.  It was developed from Bayesian ideas of using 
the posterior predictive distribution as a diagnostic.  It is less powerful than a t-test, but is more 
broadly applicable, and was shown to be effective for several GLMM models.  The method can 
probably be used for most parametric statistical models, whether in the frequentist or Bayesian 
paradigm.  Since there is a paucity of diagnostics for GLMM models, especially to assess 
whether the process embodied by the candidate model could reasonably be believed to generate 
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the data at hand, this method should help fill the gap.  The GLMM examples included normal, 
binomial, and Poisson distributed data, with and without random effects.  The PDT needs to be 
tested on a wider variety of model to better understand its strengths and weaknesses.  This can be 
done relatively easily and concisely using the R software, which contains a 'simulate' function, 
generating pseudo-data from models estimated by some of the widely used packages, like lm and 
glm, in the base package, and lme4.  Using SAS to generate pseudo-data from these kinds of 
models requires writing more code, but is also not difficult, see Boykin et al. (2011) for tips. 
 
 
7. Summary 
 
 The posterior predictive distribution (the distribution of data simulated from a model) has 
been used to flag model-data discrepancies in the Bayesian literature.  This approach has been 
broadened in two ways, one by by developing new kind of plot, where the distribution of the 
ranked pseudo-data is compared to the original data at each ranked datum.  If the data and model 
do not match, this plot is useful for determining where in the data set the model fails.  This plot is 
called a “centipede plot”, for its resemblance to that class of arthropods.  The second way the 
approach has been broadened is by devising a statistic (called PDT, for predictive distribution 
test) to compare the "distance" between the data and model (as represented by pseudo-data 
simulated from a model) with "distance" within the model.  The data-model distance is 
calculated as the mean of logs of a sum-of-square differences, each calculated from a different 
set of pseudo-data. The distance within the model is calculated by generating sets of pseudo-data 
from the model, then using each set of these pseudo-data to re-estimate the model, and finally 
generating pseudo-data from them (second order pseudo-data), matching the way the original 
data are used to generate first order pseudo-data.  "Distances" are based on the log of sums-of-
squares, following separate ranking of the data and pseudo-data.  The means from comparing the 
first and second order pseudo-data form a distribution, against which the mean form the 
comparison of the original data and first order pseudo-data can be assessed.  The power of this 
method compares favorably with those of standard methods, e.g. t-tests, but it is more general 
since it can theoretically be used for most models in the GLMM framework, whether estimated 
using traditional or Bayesian methods.  The methods was appraised both with simulated data 
(e.g. to assess power and determine that the empirically determined critical value matched the 
desired α) and with two datasets.  The PDT was applied to a variety of GLMM models, some 
purposely misspecified, others not, and was found to provide a useful diagnostic for determining 
the probability that the candidate model could produce the observed data.  The basic limitation of 
the method is the requirement for repeated model fitting (at least 300 fits appear necessary).  
Complicated models with many observations can be time consuming to fit, especially in the 
Bayesian paradigm, though all the fits and pseudo-data generated for the simple models 
examined in this paper took less than an hour of computer time. 
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