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Abstract

Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we
describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections.
Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our
study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal
and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally
may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that
mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant
disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates
that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of
RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related
viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses
simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from
this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications
for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.
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Introduction

Honey bees are the most economically valuable pollinators of

agricultural crops worldwide. In the U.S. alone, the value of

agricultural crops pollinated by bees each year is more than $17

billion dollars [1]. In 2006, an enigmatic phenomenon labeled

Colony Collapse Disorder (CCD) was observed in U.S. beekeeping

operations. CCD is defined as an unusually sudden decrease in the

numbers of worker honey bees, without expected signs of disease,

starvation, or reproductive failure [2]. Such rapid declines have

been observed throughout the history of beekeeping, and their

causes often remain enigmatic. Since 2006, colony losses have been
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noted in beekeeping operations in much of the world [3], posing a

significant threat to the pollination of many agricultural crops [4].

There is no single agent yet identified that causes CCD. Instead,

it appears that CCD results from a combination of factors that

include pathogens/parasites, pesticides, malnutrition, environ-

mental stress, low genetic diversity, and migratory beekeeping

practices. It is also conceivable that synergistic effects of two or

more insults are behind recent declines. To that end, there is some

evidence that interactions between pathogens and neuro-active

pesticides can synergistically affect honey bee mortality, contrib-

uting to colony depopulation [5,6].

An early survey [7] of healthy and CCD-affected colonies in the

U.S. found a significant correlation between CCD-affected colonies

and Israeli acute paralysis virus (IAPV), an RNA virus first identified

in 2004 [8]. The result drew immediately international attention to

the risks of virus infection in honey bees. The role of IAPV in

triggering colony declines, alone or in concert with other factors,

remains a research priority. The parasitic mite Varroa destructor has

long been considered the primary threat to honey bees [9], in part

because this mites serves as a vector of honey bee viruses [10]. For

example, levels of Deformed wing virus (DWV), a common virus that

has killed billions of honey bees across the globe, are greatly increased

following Varroa transmission [11]. A recent study showed that

Varroa mites can also serve as vectors of IAPV; furthermore, the

mite/virus association was shown to reduce host immunity and

promote elevated levels of IAPV replication [12], providing more

evidence for the damaging effects of viruses associated with Varroa
mite infestations.

In this study, we investigated the molecular basis of pathogen-

esis, transmission and genetic diversity of IAPV in honey bees and

evaluated the impacts of IAPV infection on colony losses. We also

determined the global transcriptional profiles of honey bee

responses to viral infection. Finally, we examined the inhibitory

effect of small interfering RNA (siRNA) that targets putative virus-

encoded proteins (VSR) on IAPV replication. The replication of

single-stranded positive-sense RNA viruses results in the synthesis

of complementary negative-stranded RNA, thereby producing

dsRNA replicative intermediates that are attractive targets for

defenses based on RNA interference. To counteract host RNAi

antiviral defense, viruses have evolved strategies to suppress the

antiviral effects of RNAi. A recent study with Cricket paralysis
virus (CrPV) showed that the sequences upstream of a highly

conserved sequence (DVEXNPGP) within the N-terminal region

of CrPV ORF-1 encode a potent suppressor that mutes the RNAi

antiviral defense in Drosophila [13]. As a result, we speculated that

IAPV may possess a similar mechanism to counteract the antiviral

response of hosts. We believe that knowledge gained from this

study will lead to better understanding of the dynamics of virus

disease pathogenesis in honey bees and help mitigate escalating

colony losses worldwide.

Results

IAPV attacks every stage and caste of honey bees and
causes systemic infection in honey bees

Although the bee colonies in this study showed no clinical signs

of infection, IAPV was found widely in surveyed honey bees

colonies. IAPV-positive PCR signal was detected in eggs, larvae,

pupae, adult workers, drones, and queens as well as V. destructor
that fed on the bees (Figure 1A). In addition, IAPV-specific PCR

signal was also detected in royal jelly, honey, pollen, queen feces

and drone semen collected from IAPV positive colonies

(Figure 1B). Strand specific RT-qPCR assays revealed that IAPV

causes systemic infection in honey bees. IAPV replication was

detected in hemolymph, brain, fat body, salivary gland, hypopha-

ryngeal gland, gut, nerve, trachea, and muscle. However, the

relative abundance of negative stranded RNA copies of IAPV in

the different tissues varied significantly. The hemolymph (i.e.,

hemocytes) harbored the lowest level of IAPV among the

examined tissues and therefore was chosen as the calibrator.

The difference in IAPV abundance in other tissues relative to

hemolymph ranged from 2.23- to 167-fold in the following order

from lowest to highest concentration: muscle,fat body,brain,

trachea,salivary gland,hypopharyngeal gland,nerve,gut

Figure 1. Detection of IAPV infection in a representative honey
bee colony. (A) Gel electrophoresis of RT-PCR amplification for specific
detection of IAPV from samples of worker eggs, worker larvae, worker
pupae, adult workers, drones, queens and parasitic mites, Varroa
destructor collected from the same colony. (B) Gel electrophoresis of RT-
PCR amplification for specific detection of IAPV from samples of colony
foods, queen feces, and drone semen. For both A and B, a PCR band of
586 bp indicating the IAPV infection is observed in examined samples.
doi:10.1371/journal.ppat.1004261.g001

Author Summary

The mysterious outbreak of honey bee Colony Collapse
Disorder (CCD) in the US in 2006–2007 has attracted
massive media attention and created great concerns over
the effects of various risk factors on bee health. Under-
standing the factors that are linked to the honey bee
colony declines may provide insights for managing similar
incidents in the future. We conducted this study to
elucidate traits of a key honey bee virus, Israeli acute
paralysis virus. We then developed an innovative strategy
to control virus levels. The knowledge and insights gained
from this study will have positive implications for bee
disease management, helping to mitigate worldwide
colony losses.

The Epidemiology and Pathogenesis of Israeli Acute Paralysis Virus

PLOS Pathogens | www.plospathogens.org 2 July 2014 | Volume 10 | Issue 7 | e1004261



(Figure 2A). In situ hybridization showed IAPV specific signals

localized in egg, gut, ovaries, and spermatheca of infected queens.

Colony traits and IAPV infection
IAPV was found to be the third most common virus infection

in bee colonies after DWV and Black Queen Cell Virus

(BQCV). Over the 4-year study period, the infection IAPV

detected in the brood was significantly higher than in adult bees

(p,0.001). When we divided our experimental bee colonies into

those with more than ten frames covered with adult workers and

more than six frames filled with brood and food stores (‘strong’)

versus those with fewer than ten frames of adult bees, less than

six combs with brood and small patches of food stores (‘weak’),

we found a measurable difference in IAPV infection levels. The

average rate of IAPV infection per month was 49% for brood

and 19.5% for adults in weak colonies and 26% for brood and

3.25% for adults in strong colonies. The overall rate of IAPV

infection in weak colonies was significantly higher than in the

strong colonies (p,0.01 for brood and p,0.001 for adults).

While no statistically significant seasonal variation in IAPV

infection was observed in the strong colonies, the infection rate

of IAPV in adult bees in weak colonies increased from spring to

summer and fall and peaked in winter. While strong colonies in

our survey survived through the cold winter months, almost all

weak colonies collapsed before February (Figure 3). While

strong colonies in our survey survived through the cold winter

months, almost all weak colonies collapsed before February

(Figure 3).

High genetic diversity exists between different strains of
IAPV

The complete genomes of IAPV strains collected in the US

states of Maryland, California, and Pennsylvania were obtained by

direct sequencing of overlapping RT-PCR fragments and partial

sequences from both 59UTR and 39UTR and deposited in

GenBank with accession numbers, EU224279, EU218534, and

Figure 2. Relative abundance of negative strand RNA of IAPV genome copies in different tissues of honey bees and in situ
hybridization analysis of queen somatic and germ tissues. (A) The hemolymph harbored the minimal level of IAPV and therefore was chosen
as a calibrator. The concentration of negative strand RNA of IAPV in other tissues was compared with the calibrator and expressed as n-fold change.
The y-axis depicts fold change relative to the calibrator. (B) The slides were not hybridized with DIG-labeled IAPV probe (top row, negative control)
and the slides were hybridized with DIG-labeled IAPV probe (bottom row). Positive signal is dark blue to purple and the negative areas are pink in
color. The infected tissues of queen gut, ovary, spermatheca and queen eggs are indicated by a dark blue/purple color.
doi:10.1371/journal.ppat.1004261.g002
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EU224280, respectively. Comparison of US, Chinese and

Australian IAPV strains with the first reported Israeli IAPV strain

at the genome level showed a significant genetic divergence among

different strains, providing evidence of quasi-species dynamics in

IAPV populations. The polymorphisms in IAPV were found more

frequently in 59 UTR and functional protein coding regions

compared to the capsid protein coding region and 39 UTR

(Figure 4A). Phylogenetic analysis using full-length viral genomes

showed that the Australian IAPV strain constitutes the earliest

lineage of the phylogenetic tree. The US strains branch to form a

distinct lineage distantly related to the Israeli and Chinese strains

of IAPV (Figure 4B).

IAPV infection results in more significant changes in gene
expression in adult bees than in brood

The results of microarray analyses yielded a large group of

differentially expressed genes. The principal component analysis

(PCA) mapping showed that the total accumulative variance of the

first three PCs was 78% for adult and 67.4% for brood,

respectively, and suggested that two kinds of experimental

populations (IAPV positive vs IAPV negative) were well separated

for both adults and brood. The cluster analysis showed overall

similar data patterns (Figure S3A and B), indicating that inter-

individual differences had a minimum effect on gene expression

data. The treatment variance (IAPV-infected versus uninfected)

Figure 3. Average prevalence of IAPV infection in a single month. (A) Strong colonies. (B) Weak colonies. For both strong and weak colonies,
the prevalence of IAPV infection in the brood was significantly higher than in adult bees. While strong colonies did not exhibit significant seasonal
variation in IAPV infection, the infection rate of IAPV in adult bees in weak colonies increased from Spring to Summer and Fall and peaked in the
Winter. All strong colonies survived through the cold winter months while the weak colonies collapsed before February.
doi:10.1371/journal.ppat.1004261.g003
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Figure 4. Genome-wide sequence diversity and phylogenetic relationship of IAPV isolates. (A) A graphical representation of the pair-wise
global alignments of the reference sequence of IAPV (NC_009025), the first complete sequence of IAPV, with other IAPV genome sequences
individually. This figure is retrieved from GenBank and modified. The alignments were pre-computed using the ‘‘band’’ version of the Needleman-
Wunsch algorithm. The top histogram shows the average density of nucleotide changes (excluding gaps, insertions and undetermined nucleotides)
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was significantly higher than error variance for both adult bees

and brood (both p,0.01) (Figure S3C). This confirmed that

variation among samples was largely due to IAPV and suggested

the good data quality for two ANOVA data analysis in both adults

and brood. The distribution of differentially expressed genes in

both adults and brood are presented by volcano plots (Figure

S3D). All microarray data were deposited in the NCBI public

database with accession number GSE46278.

Overall, the transcriptional response to IAPV infection was

substantially different between adults and brood. There were

2,522 up-regulated and 2,093 down-regulated genes identified in

IAPV-positive adults, but only 825 up-regulated and 525 down-

regulated genes identified in IAPV-positive brood with a very

small fraction of overlapping genes between the two groups

(Figure 5A). Of the up-regulated and down-regulated genes,

overlapping genes between adult and brood were 268 and 68,

respectively. A heat map illustrates the differential expression of

enriched functional genes between adults and brood (Figure 5B).

Of the genes transcriptionally altered by IAPV infection, 2,150

genes identified in adults and 716 genes identified in brood could

be assigned a putative function based on orthology to D.
melanogaster genes. The GO-enriched analysis of the genes that

displayed fold-changes of more than 1.5 (False Discovery Rate

adjusted r value#0.05) and had putative D. melanogaster
orthologs by the Database for Annotation, Visualization and

Integrated Discovery (DAVID) revealed major functional clusters

including metabolism, host cell transcription, signal transduction,

cell cycle, hormone synthesis, endocytosis, phagocytosis, autoph-

agy, and innate immune response (Table S1 and S2). The majority

of genes with up-regulated expression were related to the

regulation of signaling transduction and immune response, while

the majority of those with down-regulated expression were

involved with metabolic energy generation. Of the top functional

clusters, genes that were related to immune response functions

were of particular interest in this study.

We examined the integrated networks and pathways of genes

that were up- and down- regulated in response to IAPV infection.

The global canonical pathway analysis of 2,150 genes identified

in adults using the Ingenuity Pathway Knowledge Base led to

identification of five top canonical pathways, including mito-

chondrial dysfunction, TCA cycle II, protein ubiquitination

pathway, eIF2 signaling and c-glutamyl cycle, with mitochondrial

dysfunction (37 molecules, r-value 3.93E-17) as the most

significantly affected pathway. Among five significantly disturbed

canonical pathways, four showed significant up-regulation and

only the c-glutamyl cycle pathway showed significant down-

regulation. The analysis of 716 IAPV regulated genes in brood

identified five top canonical pathways, eIF2 signaling, mitochon-

drial dysfunction, mTOR signaling, TCA cycle II, regulation of

eIF4 and P70S6K signaling, with eIF2 signaling (25 molecules, r-

value 6.15E-16) as the most significantly affected canonical

pathway. All pathways showed significant up-regulation. Among

25 networks identified, one was centered by viral infection in

adults (Figure 6) and contains both up- and down- regulated

genes that are involved in pathways related to host defense

responses such as oxidative phosphorylation, ABC transporter,

endocytosis, phagocytosis, TGF-beta signaling pathway, mTOR

signaling pathway, MAPK signaling pathway, JAK-STAT

pathway, and lysosome.

IAPV infection triggers multiple immune signaling in adult bees.

qRT-PCR confirmation of immune related genes showed the

components of the Janus Kinase/Signal Transducers and Activa-

tors of Transcription (JAK-STAT) pathway including Cbl, STAT,

PIAS, and Hopscotch had #2 fold elevated expression in response

to IAPV infection. The components of Mammalian Target of

Rapamycin (mTOR) signaling pathway including GbL, MO25,

Dmel, and eIF4B had #2 fold elevated expression in response to

IAPV infection. The expression of genes including Pointed, Phi,

and Corkscrew that had functional association with Mitogen-

activated Protein Kinases (MAPK) pathway was upregulated to

2.3-, 2.91- and 1.92-fold respectively, in response to IAPV

infection. The expression of genes EGFR, PastI, Rabenosysn,

and CG1115, involved in endocytosis was also upregulated by 2.1-

, 3.18-, 1.88-, and 3.1- fold, respectively. IAPV infection also

caused the down-regulation of mTOR pathway gene such as

Raptor, MAPK pathway genes, TII and Ras, and endocytosis

gene CG6259 ranging from 22.14 to 23.9 fold. qRT-PCR

analysis of immune related genes in IAPV-infected adults showed

considerable concordance with the normalized microarray data

(Figure 7).

Identification of a putative viral interference protein
The sequence motif of DIEENPGP was identified in the N-

terminal region of ORF-1of IAPV and other members of the

Dicistroviridae family infecting honey bees such as KBV, and

ABPV, where the uppercase letters of the sequence motif indicates

residues with absolute sequence conservation (Figure 8A). An

RNAi-mediated knockdown experiment showed that silencing

putative VSR in IAPV genome could effectively inhibit replication

of IAPV and confer significant antiviral activity in honey bees.

Quantification of the titer of negative strand RNA of IAPV

showed that feeding siRNA resulted in a remarkable reduction in

IAPV replication. The bees in Group I (IAPV+siRNA) had the

lowest IAPV titer among four experimental groups at all time

points (days 1, 3, 5 and 7) and this group was therefore chosen as a

calibrator. Compared to the calibrator, Group-II (IAPV), Group

III (IAPV+Varroa+siRNA), and Group IV (IAPV+Varroa)

averaged 4.7860.25, 17.560.56, and 451.562.72 (Mean6SE,

N = 3) folder higher titers of negative strand RNA of IAPV,

respectively. The significant reduction in virus replication

observed in Groups-I and III at day 1 post treatment indicated

that the impact of siRNA on the virus life cycle takes place within

24 hours. There was no significant difference in virus titer among

different time points for each group (r,0.05, ANOVA). The

highest titer of virus replication seen in Group IV challenged by V.
destructor with no siRNA treatment provides additional evidence

for the role of V. destructor in virus transmission and activation in

honey bees (Figure 8B). The antiviral effects of siRNA from this

study (siRNA-suppressor) were compared to those of siRNA targeting

the 59 Internal Ribosomal Entry Site (IRES) of IAPV (siR-

NA-59IRES) that was shown to confer antiviral activity in bees in

our previous study [14]. The virus titer in bees fed siRNA-59IRES

was 3.360.54, 4.560.33, 3.960.21 and 5.260.67 (Mean6SE,

N = 3) fold higher than the group fed with siRNA-suppressor at Day

in all additional sequences per a reference sequence segment. The length of the segment is equal to the length of the reference sequence divided by
the width of its graphical representation (in pixels). The deletions, insertions and differences among the sequences are highlighted in blue, green and
red-violet, respectively. If no significant alignment could be obtained for a particular sequence, no horizontal bar is shown. (B) Phylogenetic tree
showing the relationship of IAPV strains from different geographic locations globally. Numbers at each node represent bootstrap values as
percentages of 500. Individual sequences are labeled with their GenBank accession numbers.
doi:10.1371/journal.ppat.1004261.g004
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3, Day 5, and Day 7 post treatment, respectively. However, no

significant difference (p valve.0.05) was observed between groups

received dsiRNAs targeting different genomic regions when

Varroa mites were introduced.

Discussion

The association of IAPV with honey bee declines has led to an

increased awareness of the risks of viral infections on bee health. In

this paper, we present a long-term study of the biological and

molecular features of IAPV infection in honey bees. Our results

showed that IAPV is established as a persistent infection in honey

bee population and infects all developmental stages and different

sexes of honey bees. The tissue tropism study showed that IAPv

replicates within all bee tissues but tends to concentrate in gut and

nerve tissues and in the hypopharyngeal glands. The highest titer

of IAPV was observed in gut tissues and, in conjunction with

detection of IAPV in colony food, suggests that food serves as a

Figure 5. An overview of gene expression profiles in IAPV infected adults and brood. (A) Venn graph compares regulated genes between
adult and brood. The intersecting circles indicate overlapping genes between adult and brood. Of 4615 genes with altered expression in IAPV-
positive adult and 1350 genes with altered expression in IAPV-positive brood, the number of overlapping genes between adults and brood was 336.
(B) A heat map illustrates differential expression profiles of up- and down- regulated genes for adults and brood. The number of genes with altered
expression was significantly higher in IAPV infected adult than in IAPV infected brood. The relative levels of gene expression are depicted using a
color scale where blue indicates the lowest and red indicates the highest level of expression. Significantly enriched Gene Ontology (GO) terms of up-
and down regulated gene clusters inducted by IAPV infection (r#0.05) appear on the right side of the heat map.
doi:10.1371/journal.ppat.1004261.g005
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vehicle for within-colony horizontal transmission. The next highest

titer of IAPV replication was observed in nerve tissue and indicates

tropism of IAPV to the bee nervous system, consistent with

observed pathologies. Specifically, while IAPV-infected bees in our

study remained asymptomatic, infected bees can exhibit shivering

wings and progressive paralysis, typical symptoms of nerve-

function impairment [8]. The third highest titer of IAPV was

identified in hypopharyngeal glands and may explain the presence

of the virus in royal jelly, a product synthesized in these glands and

fed to queens and larvae. Royal jelly, along with nectars shared

among adult workers, thus provide an important route for viral

movement within the colony.

A previous study showed that honey bees became infected

with IAPV after exposure to V. destructor that carried the virus

[12], illustrating vector-mediated horizontal transmission. In

addition, the detection of IAPV in the digestive tracts and feces

of queen bees along with detection of the virus in colony food

supplies suggest a food-borne transmission pathway, arguably

driven by frequent trophallaxis (mouth-to-mouth sharing of

food) between colony members. The detection of IAPV in eggs

and larvae not exposed to V. destructor that serves as a vector to

facilitate the horizontal transmission of the virus to their honey

bee hosts, together with detection of IAPV in queen ovaries

suggests a vertical transmission pathway from queens to their

progeny. Further, the detection of IAPV in drone semen, and in

the spermatheca used to store sperm in queens for fertilizing

eggs, suggests that venereal (sexual) infection is another

plausible mechanism by which this virus is transmitted. We

suspect that IAPV manifests itself in a way similar to the

iflavirus Deformed wing virus. Namely, when colonies are

healthy, the virus persists via vertical transmission and exists in a

latent state without perturbing host immunity. When honey bees

Figure 6. Regulated molecules that are involved in host metabolism and immunity. The figure illustrates a network predicted by Ingenuity
Pathway Analysis that is centered by viral infection and associated with molecules involved in host energy metabolism and immunity. Solid and
dashed connecting lines indicate the presence of direct and indirect interactions, respectively. Nodes indicate input of genes into the pathway
analysis and the different symbols indicate gene functions (Legend in bottom left). The intensity of the node color-(red) indicates the degree of up-
regulation while the intensity of the node color-(green) indicates the degree of down-regulation. The numbers shown in each node indicates the fold
change in response to IAPV infection.
doi:10.1371/journal.ppat.1004261.g006
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live under stressful conditions such as Varroa mite infestation

and overwintering stress, the virus replicates quickly and

becomes more infectious, leading to the death of hosts and

possible collapse of the colony.

RNA viruses are characterized by their quasi-species population

structure, that is, clouds of genetically related variants that

collectively determine pathological characteristics of the population

[15]. Genome analyses of IAPV strains shows several lineages.

Previous genetic analysis of IAPV suggested the existence of at least

three distinct IAPV lineages, two of them present in the US [16]. Our

phylogenetic analysis confirmed this finding but showed a long period

of independent evolution of IAPV strains in different collections.

Genetic variation may account for the difference in virulence

properties and severity of disease manifestations among IAPV strains

and in fact, Cornman et al. [17] noted an especially high rate of

nucleotide divergence among IAPV isolates sequenced from heavily

impacted populations. Future studies using a combination of genome

sequencing and single-nucleotide polymorphism analyses based on

sequencing RNA pools (deMiranda et al. 2010, Cornman et al.,

2013), should provide more insights into the evolutionary history,

functional variation, and pathogenicity of this virus.

The rate of IAPV infection in brood was higher than in adult

bees for both strong and weak colonies. IAPV infection triggers a

more profound alteration of gene expression in adult bees than in

brood, shown by the fact that the number of genes with altered

expression was four times higher in adults than in brood. The gene

expression data did not provide obvious clues to the molecular

mechanism(s) underlying the maintenance of the viral latency in

brood. Genes involved in immune response showed no clear trend

in expression in IAPV-positive brood. Genes involved in host

immunity were significantly invoked in IAPV-infected adults,

indicating that IAPV infection triggers active immune responses in

adult bees. The transition of the virus from latency to activation of

host immune response was likely triggered by exogenous stressors

that affect bees at the adult stage. The evidence that mitochondrial

dysfunction was the most significantly affected canonical pathway

in IAPA-infected adults suggests that IAPV likely caused

pathogenesis of energy-related host processes and functions, a

Figure 7. Expression levels of immune-related transcripts in IAPV infected adults. The expression levels of genes that were assigned to
JAK-STAT, mTOR, MAPK and Endocytosis pathways were measured by microarray analysis and further confirmed using TaqMan RT-qPCR. The
expression results obtained from microarray and qRT-PCR analyses showed good alignment.
doi:10.1371/journal.ppat.1004261.g007
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condition that tends to worsen host nutritional status and impair

host defenses mechanisms [18]. JAK-STAT was reported to be

involved in the control of the viral load in DCV-infected

Drosophila [19]. Components of the JAK-STAT pathway were

up-regulated in response to IAPV infection. Other signaling

cascades such as mTOR and MAPK pathways reported to be

involved in antiviral immune responses [20,21], also showed

expression changes in response to the IAPV infection. However,

components of the Toll and Imd signaling pathways, implicated in

antiviral immunity in insects [22,23] were not up-regulated by

IAPV infection. Toll and Imd are not always linked with antiviral

immunity and, in particular, these pathways were not a factor

during infection of D. melanogaster by Drosophila C virus, a

relatively close relative of IAPV [19], suggesting that different

viruses trigger distinct antiviral responses. Knowing which

pathways respond specifically to viral infections will enable more

targeted pharmacological or genetic control strategies.

Our results show that silencing a putative immune-suppressive

protein encoded by IAPV led to significant reduction in IAPV

replication without detrimental effect on bee hosts. This suggests

that IAPV may also encode an RNAi suppressor. RNAi

technology has been employed in previous work to combat virus

infection in honey bees. The injection and feeding of Remebee, a

dsRNA homologous to IAPV has proven effective in not only

reducing the intensity of IAPV infection in honey bees [24], but

also strengthening honey bee colonies [25]. A recent study showed

that the feeding of siRNA targeting an Internal Ribosomal Entry

Site (IRES) of IAPV required for protein translation could confer

antiviral activity in bees [14]. That feeding siRNAs targeting VSR

in this study led to suppressed IAPV replication reinforces the

Figure 8. IAPV-encoded putative suppressor of RNAi. (A) Highly conserved octamer sequences identified in dicistroviruses. A putative viral
suppressor of RNAi (VSR) is presumably located upstream of DvExNPGP. The cleavage site between the glycine and proline is marked by an arrow. (B)
Quantitative analysis of the effects of silencing putative VSR on IAPV replication. The amount of negative stranded RNA of IAPV was measured by RT-
qPCR, normalized to the corresponding b-actin in the same sample. The data shown represent the mean value for three separate experiments. Error
bars represent the range of fold change.
doi:10.1371/journal.ppat.1004261.g008
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therapeutic potential of RNAi for treatment of viral diseases in

honey bees, by showing that carefully designed constructs can

temper a potent counter-response to the host immune system.

Further exploration of antiviral effects of putative suppressors of

RNAi of other bee viruses such as KBV and ABPV, which share

the same sequence motif of DIEENPGP with IAPV, is warranted.

IAPV has a longstanding presence in managed honey bees [26].

While IAPV is not consistently tied to CCD, its ability to cause

increased mortality in honey bees has been firmly established. Our

results showed that host health status and environmental

conditions indeed play a critical role in IAPV infection dynamics.

While the simultaneous presence of multiple viruses in honey bees

makes Koch’s postulates of disease causality difficult to fulfill [27],

the presence and diversity of viruses in bee colonies has high

predictive value for colony mortality [28]. The negative correla-

tion between the level of IAPV infections and the size of host

populations, in combination with other stress factors, has

significant negative impact on colony survival and is likely a

contributing factor to poor winter survivorship of honey bee

colonies. The present study provides an improved starting point

for continuing studies of the virus-host interactions and for efforts

to formulate strategies to reduce colony losses due to viral diseases.

Materials and Methods

Bee samples
A brood frame containing bee samples of various ages and food

stores was removed from each of three declining colonies colony

selected from each colony maintained in a northern California

queen-breeding operation in Spring. Honey bees (Apis mellifera
ligustica) of different developmental stages and sexes (eggs, larvae,

pupae, workers, adult drones, and queens) and colony foods

(honey, pollen, and royal jelly), as well as parasitic mites, V.
destructor, were sampled for the detection of IAPV infection using

RT-PCR method. Clear fecal material, 20–25 ml per queen, was

collected by isolating queens individually in a 100615 mm petri

dish for approximately 30 minutes to allow them to defecate.

Approximately 20–25 ul of semen was also collected from 25

drones of each colony.

Tissue dissection
To determine the ability of IAVP to spread and replicate within

honey bee hosts, fifteen adult worker bees were collected from

each of the three colonies maintained placed in two USDA Bee

Research Laboratory apiaries in Beltsville, MD and identified to

be IAPV positive and subjected to tissue dissection. Under a

dissecting microscope, each worker was fixed on the wax top of a

dissecting dish with steel insect pins and 10–15 ml of hemolymph

was micropipetted from a small hole made with a sterile needle on

the dorsal thorax. Following hemolymph collection, a dorsal mid-

line cut was made from the tip of the abdomen to the head with

scissors, and tissues including hemolymph, fat body, brain, salivary

gland, hypopharyngeal gland, gut, nerve, trachea, and muscle

were individually removed from each worker. The scissors and

forceps were cleaned between dissections with a cotton pad soaked

with 10% bleach (0.003 sodium hypochlorite) and another soaked

with 70% alcohol, followed by a final rinse in sterile water. To

prevent contamination with hemolymph, all tissues were rinsed

once in 16phosphate-buffered saline (PBS) and twice in nuclease-

free water. The washing solution was changed after each tissue

collection to prevent cross-contamination. The same tissues of

different bees of the same colony were pooled together for

subsequent RNA extraction. All freshly dissected tissues were

immediately subjected to RNA extraction and then stored in

280uC freezer in the presence Invitrogen RNaseOUT Recombi-

nant Ribonuclease Inhibitor until quantitative examination of the

tissue tropism by strand-specific TaqMan quantitative RT-PCR

(RT-qPCR).

Additionally, twenty eggs were also collected from the colonies

identified to be IAPV positive using a fine brush. The eggs were

washed in 5% bleach solution for five minutes then rinsed in sterile

water to eliminate surface contamination of the virus [29]. Queens

from the same IAPV-positive colonies were collected and tissues of

gut, ovaries and spermatheca were excised following the methods

described above. Both eggs and queen tissues were fixed in 4%

paraformaldehyde in 100 mM PBS (pH 7.0), then stored in 70%

ethanol (200 Proof) at 4uC until in situ hybridization (ISH) assays

for localization of the virus.

Virus seasonality
To determine seasonal activities and impacts of IAPV on honey

bee health, samples of adult workers and brood (4th and 5th instar

mature larvae, prepupae, and white-eyed pupae) of A. mellifera
ligustica were collected from ten bee colonies maintained in

apiaries of the USDA Beltsville Bee Research Laboratory from

March 2008 to February 2012 and were subject to RT-PCR assay

for presence of IAPV. The experimental colonies were divided into

healthy and weak colonies based on the size of adult populations,

amount of sealed brood, and presence of food stores. 20 adult

workers and 20 unsealed brood were collected individually from

each of five strong and five weak colonies every month and

examined for the virus infection individually.

For each colony, the rate of the virus infection and strength of

individual colonies were recorded every month and the infection

rate was calculated based on percentage of tested bees (adult or

brood) that were infected (N = 20). The average infection rate each

month for both strong and weak colonies was calculated by

combining the date from five colonies each month and four years

of the same month (N = 564). The infection rates of IAPV were

compared for colony strength (healthy vs. weak), developmental

stages (adult vs. brood) and months of the year. Because the data

are binomial in nature (for each sample, the number of uninfected

of 40 total), analysis was based on a generalized linear mixed

model (because random effects were included), using the logit link

and the R software (R Core Team 2012) with the lme4 package

[30]. The combination of lowest AIC and main effects retention

(i.e. preserve main effects in the model even if not significant as

long as higher order terms involving these main effects were

significant) was used to select a model that captured the important

features of the data.

Total RNA extraction
Invitrogen Trizol reagent was used for isolation of total RNA

from whole bees and bee tissues, as well as from colony foods,

queen feces, drone semen, and Varroa mites, in accordance with

the manufacturer’s instructions. After confirmation of IAPA

positive status by RT-PCR, total RNAs intended for microarray

analysis were further purified with Qiagen RNeasy Microarray

Tissue Mini Kit. RNA integrity was assessed with a 2100

Bioanalyzer system (Agilent Technologies, Palo Alto, CA) and

RNA Lab Chip. Only samples with an RNA integrity number

(RIN) of 6 or more were used [31].

RT-PCR and strand specific RT-qPCR
The Promega one-step access RT-PCR system (Madison, WI)

was used for IAPV detection as previously described [32].

Negative and positive controls (previously identified positive

sample) were included in each run of RT-PCR reaction. The
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specificity of the amplified products was confirmed by sequence

analysis of PCR products.

RNA samples extracted from different tissues of adult workers

were analyzed for the abundance of negative-stranded RNA, a

replicative intermediate form of positive strand RNA viruses, using

strand-specific reverse transcription coupled with TaqMan quan-

titative PCR (RT-qPCR) [33,34]. For each tissue sample, the first

strand of cDNA was synthesized from total RNA using Superscript

III reverse transcriptase (Invitrogen) with Tag-sense primer, Tag-

IAPV-F1 (59-AGCCTGCGCACGTGG gcggagaatataaggctcag -

3), where the capitalized sequences of Tag were published by Yue

and Genersch [35]. The resulting synthesized cDNAs were then

purified using MinElute PCR purification kit (Qiagen) followed by

MinElute Reaction Clean kit (Qiagen) to remove short fragments

of oligonucleotides and residue of enzymatic reagents to prevent

amplification of non-strand specific products [34]. The resulting

cDNA derived from negative stranded RNA was amplified using

the Platinum Taq High Fidelity Polymerase (Invitrogen) in a 25-ul

reaction containing 2 ml cDNA, 0.25 mM of Tag primer (39-

AGCCTGCGCACCGTGG- 59), 0.25 mM of antisense primer,

IAPV-R1 (59-cttgcaagataagaaaggggg-39), a 0.2 mM TaqMan

probe (59 FAM - CGCCTGCACTGTCGTCATTAGTTA -

TAMRA 39), 0.2 mM each dNTP, 1 units of DNA polymerase,

16PCR buffer, and 2 mM MgCl2. qPCR was carried out using a

cycling sequence of 95uC for 2 min followed by 35 cycles of 95uC
for 30 sec, 55uC for 30 sec and 68uC for 1 min, which was then

followed by a final extension of 68uC for 7 min. To normalize the

qPCR result, amplification of a housekeeping gene b-actin was

performed for each sample with a previously reported primer set

and dual-labeled probe [32]. After confirmation of the approximately

equal amplification efficiencies of the RT-qPCR assay for both IAPV

and b-actin (Figure S2), the concentration of IAPV in different tissues

was interpreted using the comparative Ct method (DDCt Method).

The mean value and standard deviations of triplicate measurements

of IAPV in each tissue was normalized using the Ct value

corresponding to the triplicate measurements of endogenous

control, b-actin following the formula: DCt = (Average Ct DWV)2

(Average Ct b-actin). The hemolymph, with the lowest virus level of

IAPV, was chosen as a calibrator. Each of the normalized target

values was subtracted by the normalized value of the calibrator to

yield DDCt. The concentration of IAPV in each tissue was calculated

using the formula 22DDCt and expressed as the fold-change.

In situ hybridization
Purified IAPV amplicons from primer pair IAPVF1/R1were

incorporated into a pCR2.1 TA cloning vector (Invitrogen) which has

a T7 site downstream of the insert and the orientation of the inserts

was determined by sequence analysis. Probe complementary of

genomic RNA of IAPV was generated from linearized plasmid using

DIG-RNA Labeling Kit (T7) (Roche Applied Science, Indianapolis,

IN). Eggs and queen tissues, including spermathecae, ovaries and gut,

were subjected to dehydration by successive incubation in ethanol

(70%, 95% and 100%) and xylol (265 min each) and then embedded

in paraffin. Paraffin sections were cut ,3–5 micron thick and

mounted on poly-L-lysinated slides and stored at 4uC overnight. The

sections were then rehydrated through a descending concentration of

ethanol (100%, 95% and 70%), dewaxed in xylol, treated with

proteinase K (10 ug/ml) for 30 minutes, and acetylated with 0.33%

(v/v) acetic anhydride in 0.1 M triethanolamine-HCl (pH 8.0) for ten

minutes prior to hybridization.

The sections were prehybridized in prehybridization solution

(50% formamide, 56 SSC, 40 ug/ml salmon sperm) at 58uC for

2 hours and incubated in hybridization buffer with Dig-labeled

IAPV probe solution to a concentration of 100–200 ng/ml probe

in pre-hybridization solution at 58uC overnight. Negative control

reactions included regular dUTP instead of DIG-labeled viral

probe. After hybridization, the sections were washed in low

stringency wash solution (26 SSC, 0.1% SDS) at room

temperature for 5 minutes and washed twice in high stringency

wash solution (0.16SSC, 0.1% SDS) at 52uC for 15 minutes, and

finally incubated with alkaline phosphatase (AP)-labeled sheep

anti-DIG antibody conjugate. The hybridization signals were

detected with alkaline phosphatase (AP)-labeled sheep anti-DIG

antibody conjugate (Roche Applied Science). The conjugate

solution was added to the dry sections and incubated at 4uC for

2 hours in a humid chamber. Color development was performed

by adding the buffer solution containing nitroblue tetrazolium

(NBT) and 5-bromo-4-chloro-3-indoyl phosphate (BCIP) to the

tissue sections and incubating for 3–6 hours at room temperature

with protection from light. Dark purple to blue coloring suggested

the presence of the virus where the DIG-labeled probe bound

directly to the viral RNA, while pink staining was shown in

negative controls where no IAPV probe was included.

Whole viral genome sequencing and phylogeny
To determine the levels of genetic diversity of IAPV, the

complete genome sequences of IAPV strains from infected bees

collected in MD, CA, and PA were determined by combining

primer walking and long-range RT-PCR amplification using

Invitrogen SuperScript One-Step RT-PCR System for Long

Templates. The seven overlapping fragments of IAPV were

amplified simultaneously. The sequences of the genome termini

were determined by Invitrogen 39 and 59 RACE systems. The

primers used to amplify overlapping long RT-PCR fragments and

39 and 59-RACE nested PCR were shown in Figure S1. The

information regarding sequences and genomic positions of primers

used in this study is shown in Table 1. Overlapping sequences

were assembled into complete virus genomes using SeqMan

(DNASTAR, Madison, WI, USA).

The entire genome sequences of IAPV isolates from this study,

as well as IAPV strains identified in Australia, China, and Israeli

and previously deposited in GenBank were compared with the first

reported strain of IAPV (GenBank Accession# NC_009025) in

order to get a clear global picture of genetic diversity of IAPV

strains. A phylogenetic tree was generated using all available

complete genome sequences of IAPV. The sequence of KBV
(GenBank Accession# NC_004807) was used as an outgroup to

root the tree. Phylogenetic analysis was conducted in MEGA4

[36]. A tree was built using the Neighbor-Joining method and the

reliability of the phylogenies was assessed by bootstrap replication

(N = 1000 replicates). Node labels correspond to bootstrap support

and those values .50% were regarded as providing evidence of

phylogenetic grouping.

Microarray hybridization and qRT-PCR validation
The global host responses of honey bees to IAPV infection in

both adult and brood stages were investigated using microarray

analysis. Adult worker bees (nurse bees inside the hive) and brood

(4th and 5th instar larvae prior to capping) were collected from

three colonies that were confirmed by RT-PCR to be infected with

IAPV. The ubiquitous presence of DWV in both IAPV-positive

and IAPV-negative bees was considered to be a background

infection. Total RNAs from 10 IAPV-infected and 10 uninfected

workers as well as 10 IAPV-infected and 10 uninfected brood were

individually reverse transcribed into cDNA using Superscript III

reverse transcriptase (Invitrogen) with random hexamers. The

cDNA was labeled with Cytidine 3 (Cy3) and Cytidine 5 (Cy5),

respectively, and reversed for the dye-swap analysis. The Cy5- or
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Cy3-labeled cRNA were mixed in the same amount and

hybridized to honey bee oligonucleotide microarray slides

fabricated at the University of Illinois. Slides were hybridized,

washed, dried, and scanned using methods previously described

[37]. The signal intensities were normalized based on the mean

signal intensity across all genes on the arrays. The signal-to-noise

ratio (SNR = ,signal mean – background mean,/,background

standard deviation.] was then calculated for each spot to

discriminate true signals from noise. Only spots with an SNR

equal to or greater than 2.0 were considered positive. All negative,

poor and empty spots were flagged and discarded. The normalized

data were analyzed using Partek Genomics Suite Version 6.4

(Partek Inc., St. Louis, MO). Principal component analysis (PCA)

and hierarchical clustering analysis were conducted with Partek

with default settings. The fold changes of each gene expression in

response to IAPV infection were calculated against the uninfected

samples (negative control). Statistically significant genes were

identified using mixed model analysis of variance (one-way

ANOVA) with the Benjamini & Hochberg false discovery rate

set to #0.05. The genes that displayed fold-changes of more than

1.5 (False Discovery Rate adjusted r value#0.05) and had putative

D. melanogaster orthologs were analyzed by

DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.

gov), and GO browser and search engine AmiGO (http://www.

geneontology.org) to define identify enriched biological themes in

gene lists of both adult and brood. Additionally, the genes

homologous to the their Drosophila gene counterparts were further

analyzed for canonical pathways, biological functions/diseases, and

functional molecular networks by Ingenuity Pathway Analysis (IGA)

(Ingenuity Systems, Redwood City, CA). The Fisher’s exact test was

used to calculate a r- value to determine the probability that the

association between the gene in the dataset and the predefined

pathways and functional categories in the Ingenuity Pathway

Knowledge Base is due to random chance alone.

A list of 20 genes involved in host immune responses were validated

by SYBR Green real-time qRT-PCR in IAPV infected adult bees.

The primers used in qRT-PCR are included in Table 2. The DDCt

method was chosen for interpretation of gene expression in response

to IAPV infection following the same procedures described above.

The approximately equal amplification efficiencies of the RT-qPCR

assay for housekeeping gene b-actin and target immune genes were

confirmed individually (the slope of normalized Ct vs. log input

RNA#0.1). The data output of each gene was expressed as a fold-

change indicating whether the expression of the target gene in IAPV

infected bees was up-regulated or down-regulated compared to the

expression of the same gene in uninfected bees.

Effect of silencing putative viral suppressor of RNAi
Complete predicted protein sequences of IAPV (NC_009025.1),

along with other honey bee viruses, including KBV

(NC_004807.1), ABPV (NC_002548.1), CrPV (NC_003924),

and DCV (NC_001834) were retrieved from GenBank and

scanned for the DvExNPGP sequence motif where the upstream

sequences of the DvExNPGP motif was reported to encode a

RNAi suppressor [13]. A DvExNPGP sequence motif was

identified in IAPV and the upstream sequences of the DvExNPGP

motif at the 59 terminus of the IAPV genome was therefore

assumed to be a putative IAPV-encoded suppressor (Figure S1).

siRNA corresponding to upstream sequences of DvExNPGP was

designed using online siRNA design tool siDirect version 2.0

(http://sidirect2.rnai.jp/). The sequences of the siRNAs used in

this study are as follows: 59-UACAACUUAUUCAAGAAUCCA-

39 and 59- GAUUCUUGAAUAAGUUGUACC-39. The chem-

ically modified, 21-mer, double-stranded and in vivo ready

siRNAs were synthesized in a 250 nmol scale by Ambion Life

Technologies (CA, USA). The impact of siRNA corresponding to

a putative IAPV-encoded VSR on IAPV replication was

investigated by a laboratory cage study as described previously

[38]. Briefly, the frames with emerging brood were removed from

the colonies left untreated for V. destructor for 2–3 moths and

identified with IAPV infection by RT-PCR assay, and newly

emerged bees were collected the following day. Forty bees were

placed in each rearing cage for the assay. A scintillation vial filled

with a 1:1 ratio sucrose-water solution was inverted over the top of

the rearing cup as provision for the caged bees. The caged bees

were divided into four groups: Group-I consisting of siRNA-

treated IAPV-infected bees not exposed to parasitic mites V.
destructor, Group-II consisting of untreated IAPV-infected bees

not exposed to V. destructor, Group-III consisting of treated

IAPV-infected bees challenged by V. destructor, and Group-IV

consisting of untreated IAPV-infected bees challenged by V.
destructor. The Varroa mites used in the study were collected from

a colony that was heavily infested with mites; both honey bees and

mites were shown to be infected with IAPV using RT-PCR assay.

Twelve Varroa mites were introduced to each cage to create 30%

Varroa mite infection. For groups receiving siRNA feeding,

siRNA was mixed with sugar water in the scintillation vials,

resulting in a 50 nM/ul working concentration of siRNA. Ten

Table 1. IAPV primers used in the study.

IAPV (NC_009025) Primers Product Size (bp) Genome Position Reference

IAPV-F1 IAPV-R1 59- gcggagaatataaggctcag-39 59- cttgcaagataagaaaggggg-39 586 23–608 Di Prisco et al. (2009)

IAPV-F2 IAPV-R2 59- gctcagctaggatgacacg -39 59- catgatgccctttgcagag -39 1781 37–1817 This study

IAPV-F3 IAPV-R3 59- ggatatgccagaagttgatcc -39 59- caaagtaacttcatcagtag -39 2185 1694–3878 This study

IAPV-F4 IAPV-R 59- ctctgcaaagggcatcatg -39 59- cattaatgatgagcggcgag -39 2841 1798–4639 This study

IAPV-F5 IAPV-R5 59- agctggagctacaactggc -39 59- atggtaatgtccagcttcgt -39 2299 4657–6949 This study

IAPV-F6 IAPV-R6 59- taccatgcctggcgattcac -39 59- gcaggacattaatgtactatatccag -39 2821 6608–9428 This study

59-RACE-R1 59-cttgcaagataagaaaggggg-39 589–609 This study

59-RACE-R2 59- tcaacaggtcccgggttttc-39 1062–1082 This study

39-RACE-F1 59- ctacaaggcgaatcacgct -39 9276–9296 This study

39-RACE-F2 59- gcaggacattaatgtactatatccag -39 9403–9428 This study

doi:10.1371/journal.ppat.1004261.t001
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experimental bees along with 3 mites were collected at day 1, day

3, day 5, and day 7 post-treatment. The assay was repeated three

times. The effect of silencing putative VSR on IAPV replication

was analyzed by quantifying the titer of negative-stranded RNA of

IAPV in bees from each group by real time RT-qPCR following

the method described above.

Ethics statement
No specific permits were required for the described studies.

Observations were made in the USDA-ARS Bee Research

Laboratory apiaries, Beltsville, Maryland, USA; therefore, no

specific permissions were required to be obtained for these

locations. The apiaries are the property of the USDA-ARS and

are not privately-owned or protected in any way. Studies involved

the European honey bee (Apis mellifera), which is neither an

endangered nor protected species.

Supporting Information

Figure S1 IAPG Genome Organization and overlapping
PCR fragments spanning the entire viral genome. (A) Like

other members of the dicistroviruses, the genome of IAPV is

monopartite and bicistronic with replicase proteins (Hel, Pro,

RdRp) encoded by a 59-proximal Open Reading Frame (ORF)

and capsid proteins (VP1-4) by a 39-proximal ORF. The position

of the sequence motif, DvExNPGP, is shown. (B) Schematic

diagram indicates the relative locations of overlapping PCR

fragments and cDNA ends. The full-length IAPV genomes were

sequenced using a combination of long-template RT-PCR

amplification and methods for rapid amplification of 59 and 39

cDNA ends (59RACE and 39 RACE).

(TIF)

Table 2. Primers of immune genes in the study.

Immune Gene GeneBank Accession # Primers Product Size (bp) Reference

Cbl XM_395448.3 F: 59-gaggtaaggacgatcccaca-39

R: 59-ttcgtagcaaattcgtgcag-39

184 This work

Stam XM_623536.2 F: 59-ggataggaggcatgcacagt-39

R: 59-agatggaccacctccaacag-39

238 This work

Stat XM_397181.3 F: 59-attttgcaacacagccacaa-39

R: 59-ggtgcaccatttcctcctaa-39

241 This work

Pias XM_623536.2 F: 59-gcgagttgcgatacaaacaa-39

R: 59-ccagcaaaaccaagaagcat-39

190 This work

Hopscotch XM_001121783 F: 59-ttgtgctcctgaaaatgctg-39

R: 59-aacctccaaatcgctctgtg-39

180 This work

GbL XM_393223.3 F: 59-cgagcctacgcgtcttaatc-39

R: 59-gacccatcgttttgcttcat-39

184 This work

Mo25 XM_393376.3 F: 59-tgcctctgttcggaaagtct-39

R: 59-tgggcaacaacaatatctgc-39

202 This work

eIF4B XM_624287.2 F: 59-tcaaacaaggaatccgacct -39

R: 59-catttacaacagccccacaa -39

186 This work

Dmel XM_392604.3 F: 59-ttttgggctgttttcaacaa-39

R: 59-agctgcaagcaccatttctt-39

186 This work

Raptor XM_624057.2 F: 59-cggaagaggatgattggaaa-39

R: 59-tggatcaacgccaacattta-39

238 This work

Ras XM_395469.3 F: 59-gcgtgtgagtgtcaagctgt-39

R: 59-ccttcaaatccagctcttgc-39

248 This work

Phl XM_396892.2 F: 59-cctgctttatgccaccaagt-39

R: 59-gaacgtggatgcctttgatt-39

167 This work

TII XM_624039.1 F: 59-ctggaattccgcacgtttat-39

R: 59-cagcttcctccgaacttgtc-39

195 This work

Pointed XM_396368.3 F: 59-gaaccgttctacgccgatta-39

R: 59-ctgattctcgtcttggcaca-39

240 This work

Corkscrew XM_003249806 F: 59-ttgctgcttctcttgcttca-39

R: 59-gttctgcttgcattcgttga-3
285 This work

Past1 XM_396463.3 F: 59-ttttgatgcaaaacccatg-39

R: 59-tggacgaaactgcttgtttg-39

211 This work

CG1115 XM_001120612 F: 59-acagcagcagctgaaattga-39

R: 59-ttggataaggaattgcaggaa-3
241 This work

CG6259 XM_392468.3 F: 59-gccgacgaagtacaagaagc-39

R: 59-tttgtggcaaaccaaattca-39

229 This work

Rabenosyn XM_392585.3 F: 59-cgggaatcggtcttacaaaa-39

R: 59-tgttgcgaagcttcttccat-39

229 This work

EGFR XM_003249561 F: 59-gtgaacagtgcgaagacgaa-39

R: 59-ggaacaatacggttcgctgt-39

248 This work

doi:10.1371/journal.ppat.1004261.t002
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Figure S2 Amplification efficiencies of IAPV and b-actin.
The difference between the Ct value of IAPV and Ct value of b-

actin (DCt) was plotted versus the log of six 10-fold dilutions of

total RNA. The plot of log total RNA input versus DCt has a slope

less than 0.1, indicating that the efficiencies of the two amplicons

were approximately equal. Therefore, the DDCt calculation for

the relative quantitation of IAPV in this study was valid.

(TIF)

Figure S3 Microarray data validation. A) Principal com-

ponent analysis (PCA) scatter plot. PCA analysis of all differentially

regulated genes clearly separates the two different data sets IAPV

positive (IAPV+) and IAPA negative (IAPV2) for both adults and

brood (4th and 5th instar larvae, prepupae and white-eyed pupae).

B) Unsupervised hierarchical clustering of gene expression data.

Hierarchical cluster analysis shows the differential expression of

genes in both adults and brood in response to IAPV infection. C)

Variance ratios from ANOVA (error set to 1). For both adults and

brood, variance of treatment (IAPV infected VS. uninfected) was

significantly higher than error (r,0.01). D) Volcano Plot. The

volcano plots show a large group of up and down regulated genes

in response to IAPV infection in adults and brood. Each dot

represents one gene with detectable expression. The horizontal

line marks the threshold (p#0.05, adjusted using the Benjamini &

Hochberg false discovery rate) for defining genes with altered

expression. The vertical lines represent change $1.5 fold in

expression and define genes as up-regulated (right) or down-

regulated (left).

(TIF)

Table S1 Functional annotation clustering of activated
genes in response to IAPV infection in adults.

(XLSX)

Table S2 Functional annotation clustering of activated
genes in response to IAPV infection in brood.

(XLSX)
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