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Abstract 
 
A simulation study was conducted to determine how well SAS® PROC GLIMMIX (SAS Institute, Cary, 
NC), statistical software to fit generalized linear mixed models (GLMMs), performed for a simple 
GLMM, using its default settings, as a naïve user would do.  Data were generated from a wide variety of 
distributions with the same sets of linear predictors, and under several conditions. Then, the data sets were 
analyzed by using the correct model (the generating model and estimating model were the same) and, 
subsequently, by misspecifying the estimating model, all using default settings.  The data generation 
model was a randomized complete block design where the model parameters and sample sizes were 
adjusted to yield 80% power for the F-test on treatment means given a 30 block experiment with block-
by-treatment interaction and with additional treatment replications within each block.  Convergence rates 
were low for the exponential and Poisson distributions, even when the generating and estimating models 
matched.  The normal and lognormal distributions converged 100% of the time; convergence rates for 
other distributions varied.  As expected, reducing the number of blocks from 30 to five and increasing 
replications within blocks to keep total N the same reduced power to 40% or less.  Except for the 
exponential distribution, estimates of treatment means and variance parameters were accurate with only 
slight biases.  Misspecifying the estimating model by omitting the block-by-treatment random effect made 
F-tests too liberal.  Since omitting that term from the model, effectively ignoring a process involved in 
giving rise to the data, produces symptoms of over-dispersion, several potential remedies were 
investigated.  For all distributions, the historically recommended variance stabilizing transformation was 
applied, and then the transformed data were fit using a linear mixed model.  For one-parameter members 
of the exponential family an over-dispersion parameter was included in the estimating model.  The 
negative binomial distribution was also examined as the estimating model distribution.  None of these 
remedial steps corrected the over-dispersion problem created by misspecifying the linear predictor, 
although using a variance stabilizing transformation did improve convergence rates on most distributions 
investigated. 
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1.  Introduction 
 
Researchers in agriculture frequently collect data that do not satisfy the linear mixed model 
assumption that the response variables are normally distributed.  The recent addition of 
procedures in some commonly used statistical software packages (e.g. SAS®, R1

One way to determine how well the estimating algorithms work is to simulate data for a given 
model with known properties and parameters, and ask how well the software can reproduce 
them.  We can also ask how useful are the statistics produced from the fitted model for testing 
hypotheses about the model’s parameters.  Our approach was to simulate data from the same 
linear mixed model effects, varying the response type for a wide variety of the distributions 
supported by SAS PROC GLIMMIX. The model was a randomized complete block design that 
included a block × treatment interaction, with additional replications for each treatment within 
the blocks.  This is a simple design, which made it easier to interpret results.  It is also a regularly 
used design in agriculture.  Initially, data were generated from known models with sufficient 
power (80%) to detect specified treatment effects for a given number of blocks (30 blocks) when 
the true model was fitted.  Using the very same data, both correctly specified models and those 

) expand their 
analysis choices to a more general class of models, referred to as generalized linear mixed 
models (GLMMs). GLMMs provide a way to fit responses to predictors that include counts and 
proportions, which arise from distributions that are not necessarily normal but are included in the 
exponential distribution family.   There is also a sense of parsimony when modeling data based 
on the distribution one believes one is sampling from, rather than relying on transformations as a 
vehicle to move data into the familiar normal distribution framework due to software limitations.  
The GLMM procedures are extensions of software already developed for estimating linear mixed 
models.  However, by allowing for estimation of many GLMMs, the estimation process becomes 
more complicated and time consuming.  The SAS software designers have made three non-
Bayesian algorithms available that allow models to be estimated quickly (pseudo-likelihood―the 
default method, Laplace, and quadrature). Statistics computed from the fitted models for testing 
and estimating model effects are based on large sample (asymptotic) results and first order 
Taylor’s series approximations.  SAS does not give guidelines on the sample size necessary to 
ensure accurate parameter estimates and unbiased tests.  Because this kind of modeling is in its 
infancy, there do not appear to be general rules one can apply, and sample size requirements will 
vary greatly by sampling distribution and experimental design.  Even if the design has the power 
to detect a given difference, that does not ensure that the algorithms used in Glimmix will 
provide accurate parameter estimates.  For large data sets, estimating cell variances may be 
possible, which can be used to help determine the appropriate sampling distribution and 
determine if over-dispersion is present (see example for a generalized Poisson distribution in 
SAS Institute, Inc. 2010, p. 2955).       
 

1 The mention of a trade-name is for informational purposes only; it does not imply an endorsement by the USDA-
ARS. 
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that were incorrectly specified (e.g. omitting a term) were fit. Omission of a term is probably one 
of the most common errors when developing a statistical model, and may occur when predictor 
variable data are not collected, restrictions on randomization are not acknowledged, or there is 
incomplete understanding of the processes that generate the data.  By including a true nonzero 
block × treatment interaction effect, we could evaluate the effect of misspecifying the model by 
ignoring it, which we believe is typically done in analyses that include blocking effects.  
Additionally, data were generated from the same distributions, but with the treatment effects 
equal, to evaluate the Type I error rates.  
 
Residual variance estimation 
 
The mixed models software differs from that used to estimate parameters of linear models in a 
fundamental way.  In addition to being able to specify a factor as being fixed or random, the 
variance parameters are estimated differently.  In the familiar linear model, there is only one 
variance parameter, and it is estimated by subtraction.  From the total variance (as a sum of 
squares) of the dependent variable, one subtracts the sum of squares that is accounted for by the 
linear model, and the remaining sum of squares is used to estimate the residual variance.  Now, if 
a term is missing from the model, and it is orthogonal to all other effects, the portion of the 
variance in the dependent variable that the missing variable explains goes into the residual.  If 
the missing variable is the blocking effect, the residual variance would be increased by the 
amount that corresponds to the blocking effect’s missing variance.  Thus, if one is missing an 
important effect, the linear model’s error variance is inflated, which makes F-tests on the 
remaining effects conservative.   
 
Contrast this with what occurs for mixed models.  Here, the variance terms are estimated 
directly, so the variance due to a missing random effect is, at best, only partly accounted for by 
changes in the variance components that remain.  That is, if one summed the variances accounted 
for by the fixed and random effects that were specified in the model, that total would be less than 
the variance of the dependent variable.  Since the variance for the missing effect is largely 
ignored (and does not get to contribute to the standard errors of the fixed effects), F-tests on the 
fixed effects become too liberal.  Thus, a missing (random) linear predictor has opposite effects, 
depending on whether one is misspecifying the model as a linear model (ignoring the random 
effect), or misspecifying it as a linear mixed model, but with a missing linear predictor (the 
missing random effect).   
 
Things become more complicated when moving into the generalized linear mixed models 
framework because a ‘residual’ may or may not make sense, depending on whether one is using 
a two-parameter versus a one-parameter distribution.  For example, for the binomial and Poisson 
(one-parameter) distributions, the differences between what the model predicts (on the original 
scale) and the data values should be only sampling error (the samples will differ because one is 
sampling from a large population, so one may get four positives in one sample and seven 
positives in another, even if the true mean is 5.5 positives for a sample of that size), with the 
amount of sampling error depending strictly on the mean.  For two-parameter distributions, the 
residual variance is estimated directly (as for mixed linear models), so F-tests on the fixed effects 
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become too liberal if there is a missing random effect.  For the one-parameter distributions, a 
missing linear predictor affects the mean, and through that, the estimate of sampling error for 
each observation. 
 
Over-dispersion 
 
Since a missing linear predictor in the model generates over-dispersion, we also evaluated the 
usefulness of estimating an over-dispersion parameter, an option offered with PROC GLIMMIX.  
We wanted to see if such an approach might be used as a scaling factor to compensate for 
inaccuracies of significance tests and estimated standard errors resulting from the deliberate 
model misspecification.  This is especially important for generalized linear models (GLMs) 
involving the one-parameter members of the exponential family of distributions because the 
marginal variance of an observation is a function of its mean (the variance function for the 
distribution involves the mean).  When effects are missing in a model, the marginal variance of 
an observation, as modeled by its variance function, will be too small by a multiplicative scalar if 
there is over-dispersion.  Thus, for real data, where the model  may have missing effects, either 
because data were not collected (e.g. a covariate), or they involve interactions between fixed and 
random effects, having some way to compensate for these model deficiencies is important.  
Over-dispersion can arise for reasons other than missing linear predictors; Young et al. (1999) 
assess how well an over-dispersion parameter works for a different kind of over-dispersion in the 
GLM framework.  An additional (possibly common) model misspecification is to give the wrong 
distribution family when coding the model.  We investigated these potential model 
misspecifications by (1) assuming the generating data were normally distributed regardless of the 
true generating distribution, (2) using a variance stabilizing transformation, and then analyzing 
the transformed data as if they were normal, and, (3) for one-parameter distributions, fitting a 
(two-parameter) negative binomial distribution. 
 
Other issues 
 
PROC GLIMMIX differs from most other SAS/STAT procedures (PROCs) in that the options 
do far more than simply affect what is output, as in PROC TTEST or PROC FREQ.  We 
anticipate an important conclusion from our study:  knowing which options need to be specified 
for the model of interest (among the diversity of models that can be estimated) is critical for 
obtaining a valid analysis, and, in our opinion, requires both training on this PROC and reading 
of the (statistical) literature on GLMM models.  Without this background, a user is likely to 
make serious errors while using the software; default settings are often not advisable. 
 
An important issue that surfaced during our investigation was that of non-convergence (i.e. 
PROC GLIMMIX stopped the estimation process because, using default settings, the algorithm 
often ran into problems and was unable to provide what it determined to be good parameter 
estimates).   While there are simple fixes for some scenarios, it was nevertheless instructive to 
know under what situations non-convergence occurred when estimating parameters in our simple 
models. 
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In summary, we investigated how well PROC GLIMMIX performed for data sets both when the 
fitted model was correctly specified, and with the same data sets, how well PROC GLIMMIX 
performed when the model was deliberately missing terms. For one parameter members of the 
exponential family, we also evaluated how useful an estimate for over-dispersion was when the 
model was misspecified. All of these modeling scenarios were examined for 30-block data sets, 
and more practically achievable 5-block data sets, to examine robustness of PROC GLIMMIX’s 
asymptotic algorithms.  Our primary objectives were to identify: (1) conditions under which 
PROC GLIMMIX appears to produce “reasonable answers” (i.e. estimated parameters are close 
to those used when generating the data), (2) when frequent model non-convergence is innate to 
algorithms at default settings (i.e., naïve user), and (3) identify important strengths or 
weaknesses of PROC GLIMMIX when applied to common modeling scenarios.  
 
We provide examples of scenarios for each distribution below as a reminder of how the various 
distributions serve to model biological processes generating real data.  All examples are based on 
the same linear predictor, which includes a three-level fixed treatment effect, a random block 
effect (i.e. a restriction on randomization such that experimental units are grouped physically or 
temporally into “blocks”), and, potentially, a covariate.  They differ by the conditional 
distribution of the experimental units. 
 
Agricultural Examples  
 
Beta.  Prevalence of disease is tested by measuring the proportion of total surface area of a tuber 
covered by scab.  The blocking effect is environmental chamber and the treatments are three 
CFU (Colony Forming Unit) levels of soil inoculation, with two replicates of each CFU level in 
each chamber (six tubers were harvested and measured from each of 5 chambers).  The soil in 
each plot was inoculated with one of the three levels every two weeks from planting until 
harvest, with the objective of seeing how various levels of inocula (i.e., CFU) affected the 
development of the disease.  The covariate is tuber weight.  Since the proportion of the total 
surface covered by scab is a continuous variable, these data can be regarded as samples from a 
beta distribution. 
 
Binomial.  Repellency of compounds are tested using ticks by putting the compound across the 
middle of a strip of paper, letting it dry, and observing whether ticks will pass through the treated 
middle zone (ticks of many species will climb up a paper strip if they sense a potential host 
above them).  Eleven ticks (n) are initially placed at the bottom of the paper strip, and the 
number completely crossing the middle zone within 5 min. is noted.  The blocking effect is day, 
and the treatments are two different compounds and a control.  There are six trials (with 11 ticks 
per trial) per day.  The covariate is time of day.  This is a classic example of data arising from a 
binomial distribution, where a proportion of subjects behave in one way, and the rest in another. 
 
Exponential.  Many non-desirable invasive weed species in the Great Basin of Nevada are able to 
germinate faster at lower temperatures than more desirable native plants. To determine the 
competitiveness of native species used in restoration projects (after fires or mining reclamation), 
cumulative percent germination in soils from five goldmine reclamation sites was measured for 
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three treatments over a range of day and night temperature regimes. Soils from the goldmine 
reclamation sites were utilized as blocks. There were two batches of seeds for each treatment × 
block combination.  The three treatments consisted of seeds from Oryzopsis hymenoides (a 
desirable native species, Indian ricegrass), Bromus tectorum (an invasive weed species, 
cheatgrass), and cold stratified pretreated seeds from Oryzopsis hymenoides.  The covariate was 
the pre-trial weight of the batch of seeds.  Time required to achieve 50% germination is the 
exponentially-distributed dependent variable.    

Gamma.  In an arid or semiarid climate, a desired end point is to increase the infiltration or 
seasonal total water flux to improve irrigation water availability in the soil profile.  The 
treatments are two alternative crops versus a conventional one.  Blocks are areas within a large 
field, in each block there are six subplots, each subplot planted with one of the three crops.  Soil 
hydrological properties, such as hydraulic conductivity, infiltration, or soil water flux, are 
measured at the center of a treatment subplot.  The initial water content in the profile is the 
covariate.  Soil hydraulic properties are often right skewed; in this example they are considered 
to be samples from a gamma distribution. 

Lognormal.  The effect of three different types of dietary fat on body composition, e.g. lean body 
mass, is studied using an obese-prone rat as a model.  The primary endpoint is lean body mass 
after eating the diets for four months.  Because the investigators can only measure body 
composition in a few rats each week, the study will have a staggered start.  The rats will be 
grouped so that six rats, two per treatment, start the study each week.  Groups are used as the 
blocking factor.  Initial body weight is used as a covariate.  Previous research has shown lean 
body mass to have a lognormal distribution in this breed of obese rats. 
 
Normal.  A study of the effect of three different soil chemicals on tomato plant root growth is 
conducted.  Sixty pots of soil are individually mixed with one of the three chemicals. Then, each 
of 180 tomato seedlings of a commercial cultivar is randomly assigned to one of the 180 pots.  
When the tomato seedling is first planted in the pot its height is measured.  The pots are placed in 
different areas of a field under 30 insect-netting covers that hold six pots each, two pots per 
chemical.  After a month, the plants are removed from the pots and the root dry mass weight is 
measured for each plant.  The treatment effect is the soil chemical and the blocking effect is the 
insect-netting covered groups within the field.  The plant height at time of potting is a covariate.  
Previous studies have shown root dry mass weight to have a normal distribution for this cultivar. 
  
Poisson.  Bacillus thuringiensis (BT) produces a toxin that is often used as a biological 
alternative to an insecticide. One method of use is to genetically modify crops to include the BT 
gene. Three BT Corn Varieties are evaluated for resistance to tarnished plant bugs.  Corn 
varieties are planted in plots two feet wide and six feet long, and each block contains 15 of these 
plots (five per variety).  Measurements of resistance are taken by counting the number of 
tarnished plant bugs on an ear of corn, one ear is sampled at random from each plot (i.e., 15 ears 
are used per block). These counts follow a Poisson distribution.   The covariate is the size of the 
ear of corn. 
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2.  Methods 
 
Data were simulated for the seven distributions in Table 1 under different conditions (Table 2).  
The data were generated in SAS using code developed by M.J. Camp; the code also estimated 
the requested GLIMMIX models (Table 3) and saved the results.  Table 4 provides the 
anticipated consequences on model estimates when misspecifying the linear predictor by leaving 
out a term, along with a brief explanation.  
 
The data were generated to simulate conditions for a randomized complete block design 
(possibly including a covariate on individual observations), with three treatments, a block effect, 
a block × treatment interaction, and replications of treatments within each block.  We attempted 
to maintain a similar effect size for both fixed and random effects (i.e., all the effect sizes were 
similar), based on link-scale means differing by 10% from each other (e.g., true means of 9, 10, 
and 11; typically the effect size in which researchers say they are interested).  Actual values 
differed among the distributions in order to maintain similar effect sizes and create sensible data, 
and are given in Table 1.  We used simulation to set and verify that effect sizes were as desired, 
and adjusted the sample size (total number of experimental units) to yield a power of about 80% 
for simulation sets with 30 blocks.  For those simulations where a covariate was also generated, 
its effect size was adjusted to yield about 80% power.  Thus the effect sizes of all random and 
fixed effects were approximately the same, for all the distributions examined, although “true” 
means and variances differed among the distributions, as did the sample size per treatment-block 
combination.   
 
The motivating experimental design underlying our simulation data can be described as a 
generalized randomized block design (Wilk, 1955) with blocks being considered random effects 
and with each block consisting of enough physical units so that each of three treatments could be 
replicated multiple times. For example, blocks might be fields from randomly selected locations 
where each field is subdivided into six plots and where the three treatments are randomized to 
plots within each field so that each treatment is replicated two times.  We chose to simulate data 
from a generalized randomized block design so that (for the case of simulating data from the 
Normal distribution) variance within block and treatment could be separated from the variance of 
the block × treatment interaction. We also considered a modification so that (as in some of our 
simulations) an additional observation on each experimental unit could be used as a covariate.  
 
Because we wanted to see if variance estimates were biased, we started with 30 blocks in our 
simulations to provide a sufficient number of samples (of blocks) to get reasonably good 
estimates of the block variance.  However, most of the experiments we are familiar with are 
designed with far fewer blocks, so we also looked at results using only five blocks. 
 
As an example of how we determined parameters, the following steps were used for the gamma 
distribution.  The data set was generated (starting on the link scale) from log means of 4.5, 5, and 
5.5 (to give the 10% difference among means), the variances for the block and block × treatment 
interaction were both 1.9 (so the effect sizes of the random and fixed effects were approximately 
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the same).  Data for treatment 2 (log mean = 5) were generated from a gamma distribution with 
scale parameter c = 5 and shape parameter b = 29.68 (with c = 5, an integer value, the 
distribution is actually an Erlang, which is a special case for the gamma).  The untransformed 
mean then is bc = (29.68)(5) = 148.41 and the variance is b²c = 4405.3; the corresponding 
untransformed mean for treatment 1 is 90.02, and that for treatment 3 is 244.69.  There were 
problems using smaller mean values, resulting in not achieving the desired power value.  If the 
block or block × treatment interaction effects were larger, then for smaller means the distribution 
sets looked and tested exponential.  In the end, even with the selected means, some sets or 
subsets tested more lognormal than gamma using goodness-of-fit tests.   
 
Variation in observed data is determined by the type of distribution one is sampling from.  In 
members of the one-parameter exponential family, it is solely a function of the observation’s 
mean.  For members of the two-parameter exponential family, it is associated with a distinct 
scale parameter (or some function of the distribution’s two parameters).  Thus, if one is sampling 
from the one parameter Poisson distribution, the mean is estimated by the count, and so is the 
sampling error (variance), i.e. they are the same.  Having two replicates from the same block-by- 
treatment combination is not required to estimate the variance of that cell; though averaging the 
two counts should be a better estimate of that cell’s variance than using either single count.  
However, if one was sampling from a normal distribution, one could not estimate the cell 
sampling error (variance) from a single replicate, one would need at least two replicates.  Since 
similar code was used for all the sampling distributions and we needed to estimate a within cell 
sampling error (residual variance) for the two-parameter distributions, the situation is somewhat 
unnatural for the one-parameter distributions, with two or more observations for each block × 
treatment combination.  If one was sampling from a Poisson distribution when collecting real 
data, typically each block × treatment combination would only be counted once.  If two counts or 
replicates were taken rather than just one, additional variation would be expected to be present, 
and might include a replicate within (block × treatment) variance parameter in the estimated 
model.  Because in our simulations there was no additional variance at this level (i.e., only the 
usual sampling error that would accompany sampling from a Poisson distribution with a 
particular mean), we did not include that term in the model (and, indeed, when we did, it was 
estimated to be near zero).  For all distributions, the covariate was introduced at the replicate 
level, so the two replicates from the same block × treatment combination each had a unique 
covariate value.  We gave examples of how data might arise for each sampling distribution used 
in our study above. 
 
Under different conditions (Table 2), 5000 data sets were simulated and fit using PROC 
GLIMMIX to four different models (Table 3) that differed by the effects included in or omitted 
from the model, i.e., the data were the same but the estimating models differed.  These models 
were as follows:  (1) a model that excluded the block × treatment interaction random term (i.e. 
𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 |𝐵𝐵𝑖𝑖  � = 𝛼𝛼 + 𝜏𝜏𝑖𝑖 + 𝐵𝐵𝑖𝑖 ), where 𝑔𝑔(∙) is a suitable link function for the response 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 , 
𝐵𝐵𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝐵𝐵2), 𝜏𝜏𝑖𝑖  is the ith treatment effect, and 𝐵𝐵𝑖𝑖  is the jth block effect, (2)  the “true” model, 
the model used to generate the data, 𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 |𝐵𝐵𝑖𝑖 , 𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖  � = 𝛼𝛼 + 𝜏𝜏𝑖𝑖 + 𝐵𝐵𝑖𝑖 + 𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖 , 𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜏𝜏𝐵𝐵2 ), 
𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖  is the ijth  interaction effect of block and treatment, (3) the “true” model included a scale 
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parameter to be estimated with the random statement by using the “_residual_” option  (i.e. 
𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 |𝐵𝐵𝑖𝑖 , 𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖  � = 𝛼𝛼 + 𝜏𝜏𝑖𝑖 + 𝐵𝐵𝑖𝑖  + 𝜏𝜏𝐵𝐵𝑖𝑖𝑖𝑖  with 𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝜙𝜙 ∙ 𝑉𝑉(𝜇𝜇𝑖𝑖) where 𝜙𝜙 is a free scale 
parameter and 𝑉𝑉(𝜇𝜇𝑖𝑖) the appropriate variance function associated with the distribution function 
for 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ), and (4) a model that excluded the block × treatment interaction random term but 
included a scale parameter estimated with the random statement using the “_residual_” option.  
Representations of these models, and random statements used to estimate these models, are given 
in Table 3.  Table 4 summarizes these models and also provides a brief explanation of the 
anticipated consequences from misspecifying the estimating model. For models where a 
covariate was also generated, we again had a “true” model, a second where the covariate term 
was omitted from the estimating model, and a third where the covariate term was omitted but an 
over-dispersion parameter was added to the estimating model.  These models are also given in 
Tables 3 and 4 (denoted as models 5, 6 and 7, respectively).  Including an over-dispersion 
parameter for a two- parameter distribution (which already has a scale parameter) does not make 
sense; over-dispersion parameter results are not given for these distributions.   
 
Historically, data were often treated as normally distributed, even if it was obvious that standard 
errors of means increased with the mean.  This common model misspecification was included, 
i.e., we analyzed the data sets as if they were generated by a Gaussian process.  We also 
investigated the effects of applying a variance stabilizing transformation and of specifying a 
different distribution (possibly remedial) in the model to try to compensate for the over-
dispersion created by the missing terms.  The variance stabilizing transformations, which differ 
by distribution, are given in Table 1.  While the intent of these transformations is to rescale the 
data in a way that makes them suitable for analysis in a mixed linear models framework, the 
rescaling affects relationships among groups (e.g., if treatments A and B were most similar on 
the original scale, treatments B and C might be most similar on the transformed scale).  In 
addition, back-transformation of means and coverage intervals may produce estimates that are 
far from those produced by the appropriate GLMM analysis.  We did not investigate back-
transformation issues in our study.   
 
For one-parameter members of the exponential distribution family, missing terms leading to 
over-dispersion might be remedied by designating a two-parameter distribution.  Thus, for these 
distributions, we also fit a model specifying a (two-parameter) negative binomial distribution. 
For the binomial, this can be justified (for p < 0.5) by noting that the variance will increase with 
the mean, as it does in a Poisson distribution, and with over-dispersion, the distributions may be 
difficult to distinguish.  Further, n may not be collectible in some experiments (males are eaten, 
adults disperse).  It is a longer stretch to consider the negative binomial as appropriate to model 
an over-dispersed exponential distribution.  Both the exponential (continuous) and the negative 
binomial (discrete) can be conceptualized as waiting time distributions for an event.  The one-
parameter exponential distribution has the ‘lack of memory property’, where the probability of 
an event is invariant to time.  When X ~ Neg Bin (r, p), 0 ≤ p ≤ 1, the mean is r/p and the 
variance is rq/p2, with r = number of successes before the first failure, and q = 1 – p.  When X ~ 
Exp (λ), the mean is 1/λ and the variance is 1/λ2. If 1/λ = r/p, then the means for the negative 
binomial and exponential distributions are equal.  When q = r, the variance for the two 
distributions are equal.  If rq > r2, the variance of the negative binomial exceeds that for the 
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corresponding exponential.  However, since r takes on only integer values and 0 ≤ q ≤ 1, this is 
unlikely to occur (however this does show that the negative binomial can be an appropriate 
model for an under-dispersed exponential distribution).  If one relaxes the restriction on r to 
allow non-integer values with r > 0, then the negative binomial distribution can model an over-
dispersed exponential distribution; we use this justification to motivate our use of the negative 
binomial distribution. 
 
All models were fit using the default options in PROC GLIMMIX, as a naïve user (someone who 
is comfortable using SAS, specifically many of the STAT PROCs, but doesn’t know much about 
PROC GLIMMIX) might do, certainly on the first modeling attempt.  Thus, we did not choose 
starting parameters, bounds, estimation method, etc.  Part of the reason for this is that we felt that 
this should be the usual approach for using the software, since SAS/STAT products are used by 
non-statisticians (such as the researchers we work with), as well as by applied statisticians.  New 
users will not recognize that understanding the options and a good deal of the theory behind them 
is key to producing a correct analysis; this is not true for many of the other SAS/STAT PROCs.    
 
The PROC GLIMMIX default options were:  (1) Estimation METHOD=RSPL (Subject-Specific 
Residual Pseudo-Likelihood), (2) DDFM=CONTAIN, and 3) LINK=LOGIT (for Beta and 
Binomial), LOG (for Exponential, Gamma, and Poisson), and IDENTITY (for Lognormal and 
Normal).   Many users with some training, e.g., with PROC MIXED, will have learned that 
setting DDFM=KR is recommended.  We initially tried that option but found that the estimated 
degrees of freedom varied from one simulated data set to another; using the default 
DDFM=CONTAIN produced the same degrees of freedom for every simulated data set for a 
given condition.   
 
Computing Methods 
 
The data for the distributions were simulated with SAS v. 9.2 (TS Level 2M0) (SAS Institute 
Inc. 2010) software. Using SAS’s macro language, macros were written to generate the data, run 
the PROC GLIMMIX models under the various conditions, and save and manage the output 
from PROC GLIMMIX.  Following SAS’s recommendation, the RAND function was used to 
simulate the distributions.  Based on an efficiency study by Novikov (2003), an index variable 
was created with a unique value for each data sample.  This allowed the data sets to be modeled 
in PROC GLIMMIX using by-group processing, which greatly reduces the time needed to model 
the data.  Options in the Output Delivery System were used to keep the output from filling the 
computer’s random access memory during modeling. 
 
Estimated Values 
 
One common difficulty with software of this nature is that the model estimation may not 
converge under default settings.  Typically, it is unclear whether this is due to a data or model 
problem (potentially solved by specifying particular options) or related to the estimating 
algorithm.  If one knows the true model used to generate the data and specifies it for estimation, 
then poor convergence cannot be due to data or model issues, but can only come from the 
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algorithm if the data set is sufficiently large (and the definition of ‘large’ may differ by 
distribution).  Surprisingly, there were many instances of low convergence rates with some 
conditions and distributions when the model used was known to be the true one. 
 
In addition to convergence rates, for those models that did converge, we saved parameter 
estimates from the various fixed and random effects specified in the model, the over-dispersion 
parameter (if present), the F values for the treatment effects, and the associated p values.  In 
some instances, we examined the correlations between parameter values.  We examined the 
output parameter estimates to see if they matched those used to generate the data, and what, if 
anything, changed when the model was misspecified.  We examined changes in p values for 
misspecified models (power and Type I error), in particular, we were interested in whether 
omitting terms grossly affects p values (since, with real data, every model will be somewhat 
misspecified), and how p values change as one reallocates observations to, say fewer blocks, but 
more observations per block.  Table 2 gives the various conditions that were examined for all 
distributions.  Since variance stabilizing transformations are commonly used for data when the 
variance appears to vary with the mean, as it does for most members of the exponential family, 
we were also interested in whether p values from transformed data, subsequently analyzed as if 
normally distributed, were similar to those based on the appropriate GLMM model.  This is 
important because there are far fewer convergence issues if one models (transformed) data using 
the normal distribution than for other distributions. So a reasonable route, if one has convergence 
problems, is to try a variance stabilizing transformation; yet other important limitations of 
reliance on a transformation approach are discussed below.   
 
Over-dispersion 
 
The term “over-dispersion” refers to more variation displayed by data than what is expected 
under an assumed model. For generalized linear models (GLMs), an assumed model may imply a 
relationship between the mean and variance of the marginal distribution for the random variable 
being modeled. This relationship has the form 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝑉𝑉(𝜇𝜇) where 𝑌𝑌 is the random variable, 𝜇𝜇 
is its mean and 𝑉𝑉(∙) is some function. For example, for a random variable 𝑌𝑌 that is a binomial 
proportion, 𝜇𝜇 = 𝜋𝜋 where 𝜋𝜋 is the probability of success for a given trial, and the relationship 
between the mean and variance is 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜇𝜇 ∙ (1 − 𝜇𝜇). When modeling proportions assumed 
to be binomial but the data suggest that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) ≫ 𝜇𝜇 ∙ (1 − 𝜇𝜇), a free scale parameter 𝜙𝜙 is used 
as a simple solution to correct the discrepancy so that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) = 𝜙𝜙 ∙ 𝜇𝜇 ∙ (1 − 𝜇𝜇). Similar 
corrections apply for other one-parameter distributions such as the Poisson and exponential 
distributions. For GLMs, Wedderburn (1974) suggests estimating 𝜙𝜙 with the sum of squares of 
the ‘Pearson’ residuals divided by the residual degrees of freedom.  
 
The problem of over-dispersion is carried over to GLMMs, as they are GLMs with random 
effects included in the linear predictor, and possibly a structured residual covariance (e.g. due to, 
say, repeated measures on the same experimental unit).  Our simulations generated over-
dispersed data by virtue of the random effects we included in the simulations (but did not specify 
in the estimating model). The data were necessarily over-dispersed for fitting GLMs to them 
because of the model we used to generate them.  PROC GLIMMIX provides this over-dispersion 
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correction through the random statement when used with the keyword “_residual_”.  In our 
study, we fitted GLMMs with the “random _residual_” statement to see how well the scale 
parameter 𝜙𝜙 was estimated and to explore whether it could be used for correcting test statistics 
for misspecified models, in the same way it is used to correct for over-dispersion for GLMs that 
are misspecified. PROC GLIMMIX uses the sum of squares of “Pearson” residuals divided by 
the residual degrees of freedom to estimate 𝜙𝜙. We computed residual degrees of freedom as N –
 g –1, where N is the number of cases in the data set and g is the number of G-side parameters 
that are estimated. For more details of this computation, refer to SAS Help and Documentation 
for PROC GLIMMIX (SAS Institute, Inc. 2010). The Wald F-statistics reported in the output of 
the fitted model using PROC GLIMMIX with the “random _residual_” statement are scaled 
versions of the F-statistics that would be reported without the “random _residual_” statement. 
That is, the F-statistics reported for testing a treatment effect for a fitted model using PROC 
GLIMMIX with the “random _residual_” statement is F 𝜙𝜙�⁄  where F is the F-statistic computed 
when fitting the model without the “random _residual_” statement and 𝜙𝜙� is the estimate for 𝜙𝜙 
when fitting the same model with the “random _residual_” statement. 
 
3.  Results 
 
Below we give general results for the models when the estimating models match the true models 
generating the data (i.e. Models 2 and 5, Table 3) and, subsequently, when the estimating model 
is misspecified (i.e. Models 1, 3, 4, 6, 7).  Following that are detailed results for each distribution 
(additional information is found in Tables 5 – 8 and Fig. 1).   
 
Results when generating and estimating models match (Models 2 and 5, Table 3) 
 
In general, the proportion of fitted models that converged (referred to as convergence rate in this 
paper) was high for all the distributions except the beta, exponential, and Poisson (Tables 5 and 
6).  The number of blocks had a large effect on convergence rates for these latter distributions; 
convergence rates were higher for the five block models than for the 30-block models.  For the 
30-block model, the exponential distribution was particularly difficult for PROC GLIMMIX to 
fit with the default options―less than 30% of the models converged.  Surprisingly, the Poisson 
distribution (with slightly over 40% converging for the 30 block model) was also problematic 
using the default options (though not when options were changed―see details for the Poisson 
distribution below).     
     
Since not all simulations converged, our definition of power is based on only those data sets 
where the model converged (Table 7).  We created the data sets to have approximately 80% 
power (for the F-test on treatment) for the 30-block model and investigated how the power 
changed as we reallocated observations to fewer blocks (power will decrease since the block and 
block × treatment interaction variances are less well estimated, increasing uncertainty in the 
fixed effect parameter estimates).  Power decreased markedly from Condition 1 to Condition 2 
(Fig. 1) for all the distributions tested; in most cases decreasing to less than 40%, even for the 
same total number of observations.  Thus, the number of blocks in an experiment has a 
substantial impact on how well one can detect fixed-effect treatment differences.  While for 
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linear mixed models the relationship between the number of blocks (as a random effect) and the 
power to detect treatment differences is well known to statisticians, researchers (who typically 
design their own experiments) are too often ignorant of this relationship, and focus instead on 
total N.  Our results confirm that this is also a design issue in the GLMM framework for all 
distributions examined. 
 
If all the treatment means are set equal, Type I error rates should be about 5%.  For the beta 
distribution, Type I error was slightly higher than 5%, for the binomial and Poisson distributions 
it was lower (Table 8).  The exponential distribution had only a 2% Type I error rate for 
Condition 5 (5 blocks), but was somewhat greater than 5% (5.6%) for the 30-block simulation 
set, though with low convergence rates, these percents are not always accurately estimated.  
Based on the binomial distribution, two standard errors on 5000 simulations for p = 0.05 is about 
0.006, thus, if everything was working correctly, Type I error rates should have ranged from 
4.4% to 5.6%.  The Type I error rate fell well outside these limits for some of the distributions 
(Table 8).  Thus, it appears that Type I error rates are not correct under certain conditions, even 
when the model is known to be “true”.  We do not know the reason for this. 
 
In general, the estimates of the variance parameters and treatment means were very close to those 
used to generate the data; some of the variance parameters showed a small but consistent bias.  
One exception to the generally good parameter estimates was that both the block and block × 
treatment variance components were estimated to be zero in almost all simulations which 
converged for the exponential distribution.  For this distribution, the algorithm seemed to have 
difficulty keeping some variance components away from zero.  Some additional bias results for 
other distributions are given below in the summaries for each distribution.  Littell et al. (2006) 
suggested using the ‘nobounds’ option (to allow variance components to become negative during 
the estimating iterations), which may produce better final variance estimates (and avoid 
premature termination of the estimation routine).  However, as explained above, default options 
were used in this study. 
 
Results when generating and estimating models do not match (Models 1, 3, 4, 6, 7, Table 3) 
 
A likely scenario when analyzing real data in the GLMM framework occurs when predictor 
variables, either fixed or random, are missing.  We looked at examples of both.  We modeled the 
data without the block × treatment interaction effect and found that, for every distribution, the 
proportion of significant tests on the fixed treatment effect increased, that is, the tests for 
treatment became too liberal when the model was missing a random effect (Table 7).  This 
erroneous (but expected) apparent increase in power was most noticeable for Condition 3 (5 
blocks; Table 2), where the power for the true model was low.  For most distributions in this set 
of simulations, the power increased from 20% for the true model to more than 80% for the model 
missing this variance component.  This problem is particularly apparent for the sets of 
simulations where the means were set equal (Table 8); Type I errors increased from about 5% to 
over 60% for all but the binomial and exponential distributions (in the latter two, Type I errors 
increased to 34% and 8%, respectfully).  The variability associated with this missing variance 
component was, at best, only partially absorbed by other variance components in the model; the 
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block variance did tend to be slightly overestimated when this interaction term was missing.  The 
F-tests were distorted because the data were over-dispersed for the fitted model.  In contrast, 
modeling the data without the covariate predictor had essentially no effect on the F-test for the 
treatment fixed effect, i.e., power was not affected nor did it introduce bias into the means of the 
treatment effects.  In general, the treatment means and variance parameter estimates for models 
missing either a random or fixed linear predictor were accurate, with only a slight upward bias of 
the block variance parameter, as noted above, when the random term was missing from the 
estimating model.  
 
Models can also be misspecified by furnishing the wrong conditional distribution (i.e. the wrong 
distribution family).  We found that, by misspecifying a distribution as normal, convergence 
rates were nearly all 100% and power was largely unaffected (i.e. F-tests on treatment effects 
were not affected by this type of misspecification), though it did decrease (was more 
conservative) for the exponential and lognormal distributions (Table 7).  Even though an 
important rationale for using PROC GLIMMIX is to account for the relationship between the 
mean and variance for non-normal distributions, which is ignored if the distribution is specified 
as normal, this did not appear to be an important issue in our simulations; certainly not in 
comparison to the very large problem created when dropping a random effect from the model.  
We are aware that the chosen basic model and how the parameters of that model were populated 
were likely responsible for the observed small effect of loss of power due to conditional 
distribution misspecification.  Parameters and models could certainly be chosen to demonstrate 
that conditional distribution misspecification has serious negative consequences (in addition to 
affecting F-tests, estimated means can be badly biased).  What is unclear (and not investigated in 
this paper) is under which conditions distribution misspecification does matter. We show only 
that under the conditions investigated this type of model misspecification did not greatly affect 
F-tests. 
 
For many distributions in the exponential family, there is a historically recommended variance 
stabilizing transformation designed to allow the transformed data to be analyzed as if they were 
normally distributed.  For example, for the binomial distribution, the arcsine-square root 
transformation approximately stabilizes the variance (to meet the homogeneity of variance 
assumption of linear models).  We applied the recommended variance stabilizing transformations 
to our simulated data and found that, except for the exponential distribution, power was 
preserved (Table 7) and convergence rates were at or near 100% (Table 6).  The variance 
stabilizing transformation did not work well for the exponential distribution; power dropped by 
about 25%.  Our results suggest that if convergence is an issue, except perhaps for the 
exponential distribution, a variance stabilizing transformation can be used, but we recommend it 
only as an initial step to obtain starting parameter estimates and to see which effects are 
important because, as mentioned above, relationships among means on the transformed scale 
may be quite different from those on the original scale.  Our results also suggest that the variance 
stabilizing transformation is not remedial for a missing random effect; that is, power for Model 1 
(missing the random block by treatment interaction effect) was about the same if the generating 
distribution was used or if the data were transformed and the normal distribution was used 
(except for the exponential distribution). 
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A possible alternative remedial distribution for over-dispersed data from a one-parameter 
member of the exponential distribution family is to use a two-parameter distribution.  The 
negative binomial distribution has been suggested (SAS Institute, Inc. 2010) as a possible 
remedial distribution for data coming from an over-dispersed Poisson distribution, thus we tried 
it for the Poisson distribution and for other one-parameter members for Model 1.  For no 
distribution did the negative binomial distribution decrease power to the correct level (80%).  
Thus, at least for the situations we examined, the negative binomial does not compensate for 
over-dispersion resulting from a missing random effect. 
 
Below are our observations of the simulation results for each distribution. 
 
Beta Distribution  
 
Using true Model 2 (Table 3), parameters were selected (Table 1) to simulate beta-distributed 
data (0 < pi < 1) in the neighborhood of 0.20 (µ1 = 0.175, µ2 = 0.20, µ3 = 0.225); a region of the 
range where there is a strong relationship between the mean and variance and the benefit from 
using an arcsine(√pi) transformation is realized.  Beta-distributed variates, pi , occur as 
proportions whose n (i.e., denominator) on which the proportion is based is not known; or when 
there is need to model over or under-dispersed binomially-distributed data.  For Models 2 and 5 
(“true” models) the block variance estimates were accurate, ranging from σ2

block = 0.156 to 
σ2

block= 0.164 (true link-scale value = 0.16) and the block × treatment variance (true link-scale 
value = 0.09) were also accurate, ranging from σ2

block × trt = 0.085 to 0.097.  The 3 treatment 
means were consistently biased upward for all estimating models (1, 2 and 5; Table 3).  For 
Model 1, the average bias (over 5,000 simulations) ranged (across all conditions examined) from 
2 to 4% above the true data scale treatment mean values.  For Models 2 and 5, the average bias 
ranged from 1 to 2.7% above the true treatment mean values.    
 
Convergence rates (Table 5) for the true beta model, with two replicates per block-treatment 
combination, were comparable for 30 blocks (83.1%) and for 5 blocks (81.4%), but low; yet 
improved (87%) for 5 blocks with 12 replicates.  Under the same three conditions, the 
convergence rate was better for Model 1 (excluding a random effect) than for (true) Model 2; 
PROC GLIMMIX algorithms (at default settings) converged substantially (2 to 10%) more often 
for an incorrect model (due to omission of a random effect) than for the correct model. Under 
normality assumptions, convergence rates were 100% (Table 6) regardless of whether a normal 
distribution (Table 1) was fit directly to beta-distributed data (Condition 6) or was fit to 
transformed data (Condition 7).  When fitting a model that omitted a linear covariate term that 
was present in the generated data (Model 6), the convergence rate (79.5%) exhibited no 
appreciable change from the convergence rate (81%) of the true model, Model 5 (Table 5).  The 
average time required to fit each of the 5,000 beta models ranged from 0.07 to 7.4 seconds, even 
with 13% to 19% non-convergence rates.  
 
The observed power (Table 7) of the true beta model for detecting significant differences among 
the treatment means was very close to the 81% true power; regardless of condition (1, 6, 7 or 9; 
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Table 2). For each condition, the observed power for Model 1 was ~12% greater than for the true 
model; indicating that failure to model all random effects consistently resulted in liberal F-tests 
for the fixed treatment effect.  Highly inflated observed Type I Errors (Table 8) corroborated this 
finding.  The treatment effect F-tests were also too liberal for the true model.  Even though the 
data were simulated with true α=0.05, false positive treatment effects were observed in 5.4% of 
the 5,000 simulations, regardless of number of blocks used (Conditions 4 or 5); and with a 
slightly higher (5.6%) frequency using transformation (Condition 8). 
 
Binomial Distribution 
 
Treatment means for the one-parameter binomial distribution were centered on zero (on the logit 
scale, 0.5 on the proportion scale), not a region where the arcsine-square root transformation is 
needed.  Convergence rates were uniformly high and estimations rapid.  Like the other 
distributions examined, power and Type I error erroneously increased when the model was 
misspecified by omitting the random block by treatment interaction term.   
 
The negative binomial distribution should not be used as a remedial distribution, even if all p’s 
are small (see above); the power estimate dropped from 80% (estimating distribution as 
binomial) to 46% (same data, estimating distribution as negative binomial) for Model 2 
(Table 7).  However, assuming that the data were normal or using the arcsine-square root 
transformation did give reasonable results for power for the simulations settings used. As noted 
above, this should be expected for means close to p = 0.5, as they were for the simulations done 
for this distribution.  Inclusion of the over-dispersion parameter (which was frequently estimated 
to be < 1) did not compensate for the missing random effect. 
 
Exponential Distribution 
 
Unexpected results were obtained when using a simple, one-parameter exponential distribution 
for generating simulated data.  Lack of convergence was the major stumbling block for obtaining 
accurate estimates of model parameters, the over-dispersion parameter, and bias. The true model 
consistently had the worst convergence rates of all the models under all tested conditions, 
ranging from 25% to 86%. Anomalous results occurred when the number of blocks was reduced 
while keeping sample size low―convergence rates almost doubled (27% to 48%) at a cost of 
severe power loss (86% to 11%). This same doubling of convergence rates (27% to 53%) was 
seen when more replicates were reallocated to fewer blocks without as much loss in power (86% 
to 61%). The strangest convergence issue related to exponentially distributed data was that the 
true model had the covariance parameter estimates, block and block × treatment, of zero for 
those simulations that converged, whereas simulations that did not converge overestimated those 
same covariance parameters such that averaging the converged and non-converged estimates 
produced better estimates of all parameters. 
 
Power was ill-defined since it could only be calculated for those simulations that converged, and 
convergence was generally quite low.  Type I error estimates tended to be slightly overestimated   
for all models tested, ranging from 5.4% to 6.8%. When an over-dispersion parameter was 

152



included in the model, model parameter estimates tended to be lower for the data sets that did not 
converge, and was most inaccurate for Model 3 (an over-dispersion parameter added to the true 
model) due to it having the lowest convergence rates.  There was more bias present (both 
positive and negative) for the random effects of block and block × treatment in all models than 
for the fixed effect parameters.  
 
When a normal modeling distribution was assumed for exponentially generated data without a 
log(Y) transformation, 100% convergence was obtained with no great loss of power (86% to 
81%), at a cost of overestimating the random effects.  When using a normal modeling 
distribution with a log(Y) transformation, convergence was still 100% but resulted in a 25% 
decrease in power (from 86% to 61%), as well as overestimation of random effects and 
underestimation of Type I error.  When a negative binomial modeling distribution was assumed 
and no data transformation performed, there was no change in low convergence rates (27% to 
25%), so power was still ill-defined, and resulted in underestimation of the random block effect. 
 
Gamma distribution 
 
There were severe consequences for model misspecification, often resulting in low convergence, 
poor power and poor Type I error rates, and bias in estimates of treatment means and covariance 
parameters.  These problems were especially pronounced for Model 1 and Model 4 results; 
hence, any inferences on results from these models are from a relatively small number of cases 
and must be considered with caution (we intentionally omit some results from our tables for this 
reason).  Simulations with five blocks lowered power by about 55%.  For log-transformed data 
under normal distribution assumptions, convergence was 100% and power and Type I error 
results were reasonable only for Model 2, but also produced somewhat larger biases in 
covariance parameters and estimates of treatment means.  Results with an added covariate were 
very close to those of Model 2, but only when the covariate was included in the analysis, and the 
convergence rate was almost 100%.  Adjusting convergence criteria and iteration options can 
markedly improve the convergence rate.  For example, in Tables 5 and 6, when the options for 
Model 1 were set to allow for up to 50 iterations, the convergence rate changed to 98.4%.  See 
the Poisson results for more discussion on this topic. 
 
Lognormal Distribution 
 
All simulations converged for the lognormal distribution when the estimating distribution was 
correctly specified as lognormal or when it was specified as normal.  Power and Type I error 
were identical when the response, Y, was modeled using the lognormal distribution and when 
log(Y) was modeled using the normal distribution.  When the data were modeled using the 
normal distribution without transforming the responses, power decreased to 60% for the true 
model and the estimates of the treatment means were biased by a factor of exp(σ2).  No other bias 
in treatment means was observed.  When the estimating distribution was correctly specified as 
lognormal and the block by treatment interaction was omitted from the model, power increased 
from 79% to 93% and the Type I error increased from 5% to 15%.  The estimates of the block 
variances were inflated by approximately 20%.  
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Normal Distribution 
 
The normal distribution always converged under all conditions and models.  The estimated 
power depended primarily on the number of blocks, less so on the number of replicates.  For 30 
blocks and two replicates, the power for Model 2 was 81.1%; under Model 1 (missing the 
treatment- by- block interaction) it was 93.4%.  When the number of blocks was reduced to five 
(1/6 N), the power fell to 15.5% and 41.8% respectively.  Even when the number of replicates 
was set to 12 with five blocks, (thus providing the same number of experimental units as with 30 
blocks and 2 replicates) the power did not increase greatly for Model 2 (rising only from 15.5% 
to 20.0%).  However, there was a larger increase, to 89.0%, for Model 1.  The Type I error rate 
for Condition 1 was 4.8% for Model 2 (within expectations) but 16.8% for Model 1 (with the 
missing term). When blocks were reduced to five and replicates increased to 12, the error rate 
was 5.5% for Model 2 and 69.7% for Model 1.  Type I error inaccuracies were thus more 
pronounced for fewer blocks.  Under all conditions and models, the average treatment mean 
estimates were very close to their true value. On average, the block variance estimate increased 
when the block × treatment effect was omitted (Model 1). For data generated under the various 
simulation conditions the average block variance estimate for Model 1 was 12.2% to 18.4% 
higher than the true block variance.  When normally distributed data were modeled as lognormal 
the power was 4.3% for Model 1 and 17.3% for Model 2. The back-transformed treatment means 
were, on average, positively biased by one unit (2%). 
 
Poisson Distribution 
 
For Model 2, when the generating and estimating models matched, PROC GLIMMIX had a poor 
convergence rate with a large number of blocks; this convergence rate improved greatly when 
the number of blocks was decreased.  The convergence rate was 45% with 30 blocks, but 87% 
(n = 30, Condition 3) and 96% (n = 5, Condition 2) when blocks were decreased to five.  We are 
unclear as to why this occurred.  As expected, power decreased as the sample size and the 
number of blocks decreased.   
 
The simulated value for the variance components were chosen so that power would be 
approximately 80% for blocks = 30 and n = 5. However, when the true model was fit to the data, 
the Type I error rate was too low (3.97%). The true means for the 3 treatments were 3.5, 4.0 and 
4.5. The average treatment means from the 5000 simulations were slightly larger (one to three 
percent increase) than the true means for all conditions and all models (except for Conditions 7 
and 8).  
 
When the generating and estimating models did not match, the convergence rate improved when 
the negative binomial was used to model the data (86% for 30 blocks and 94% for 5 
blocks).  Specifying the normal distribution yielded 100% convergence.  Modeling the data as if 
they had come from a negative binomial or normal distribution gave approximately 80% power 
and improved the Type I error rate (but they were still low).  As expected, leaving the block × 
treatment variance component out of the model resulted in increased Type I error rates.  Adding 
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an over-dispersion parameter in the model did not appear to help correct for the model 
misspecification. 
 
Using Laplace estimation method increased the convergence rate when using the correct model. 
For 30 blocks, 5 samples and Model 2 (correct model), the convergence rate increased from 
45.1% (see Table 5) to 100% with ‘method = Laplace’.  In order to improve convergence with 
the pseudo-likelihood default method, a special set of runs were used to check out options to 
assist with convergence for a Poisson distribution. One thousand data sets were simulated with 
30 blocks and 5 replications per block-treatment combination. When PROC GLIMMIX fit the 
true model with no additional options, the convergence rate was 49%. Changing the ‘pconv’ 
options had the biggest effect on improving convergence rate. This option sets the criteria for 
deciding when the iterative process shows little change in estimated parameter values. 
Decreasing the sensitivity, by changing pconv from 1e-08 (default) to 1e-06, increased 
convergence to 98.8%. Increasing maximum iterations to 50 with the ‘maxopt’ option (with 
pconv at its default) increased convergence slightly to 51.4%. Using the ‘subject=options’ on the 
random statement also increased convergence slightly to 51.4%. Using all three options 
increased convergence to 99.3%. 
 
Figure 2 compares results between the default and LaPlace estimation methods for Model 2 (the 
correct model). As indicated above, using LaPlace estimation greatly improved percent 
convergence.  However, when the means were set equal (Conditons 4 and 5), Type I error rates 
were consistently greater than 5%, especially noticeable for simulations with five blocks.  Figure 
2 also depicts values (or estimates) for the variance parameters, which were consistently 
underestimated using the LaPlace estimation method.  These results are consistent with the kinds 
of biases accompanying maximum likelihood methods (of which LaPlace is one). 
 
Over-dispersion 
 
Adding an over-dispersion parameter only makes sense for one-parameter members of the 
exponential family, since the two- parameter members do not have the tight linkage between the 
mean and variance.  We included the “random _residual_” option to fit simulated data with 
Model 3 for the Poisson, binomial and exponential distributions to test whether the mean 
estimate of 𝜙𝜙 would be 1, as should be expected, and with Model 4 (the intentionally 
misspecified model with the block × treatment term omitted) to evaluate if its inclusion would 
produce unbiased F-tests for the treatment effect. The mean estimate of 𝜙𝜙 when fitting Model 3 
was approximately 0.98 for all three distributions investigated. The slight effect of the 
underestimation of 𝜙𝜙 is revealed by comparing Models 2 and 3 in Table 7 where the observed 
power for Model 3 is slightly larger than that for Model 2 for each distribution. The reason for 
this is because the F values for Model 3 are the same F values of Model 2 but multiplied by 1 𝜙𝜙�⁄ .  
We also included the “random _residual_” option to fit simulated data with Model 4 for the 
Poisson, binomial and exponential distributions to see whether the resulting F-tests would 
perform similarly to the F-tests corresponding to the fitted Model 2.  Inspection of Table 7 
reveals that the power for the binomial and Poisson distributions to be substantially larger for 
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fitting Model 4 (with a missing term ) than for Model 2, suggesting the over-dispersion 
parameter is severely underestimated when random effects are unaccounted for in the model.   
 
It appears that 𝜙𝜙� will generally underestimate 𝜙𝜙 when random effects, not accounted for in the 
model, do have a substantial impact on the model.  In a simulation to illustrate this for the 
binomial distribution, we conducted 500 Monte Carlo simulations under Model 2 for the 
binomial distribution and compared all pairs of F statistics resulting from fitting both Models 2 
and 4 to each data set (Figure 3). These F-statistics in Fig. 3 indicate that the F values computed 
with the scale parameter adjustment for Model 4 are too large and could be easily scaled to 
accurately approximate the F value computed for Model 2 by adjusting 𝜙𝜙� by a multiple scalar. 
This suggests that the degrees of freedom used for computing 𝜙𝜙�  should be some smaller amount 
than what is presently used with PROC GLIMMIX.  We do not recommend using the ‘random 
_residual_’ statement to adjust for over-dispersed data when fitting a GLMM (i.e., when random 
effects are deemed a necessary part of the linear predictor.)     
 
4.  Conclusions 
 
We investigated how well SAS PROC GLIMMIX handled data simulated from a variety of 
distributions, with models that either matched those used to simulate the data or were 
misspecified in some way.  The reason to look at misspecified models was because the “true” 
model is typically unknown, so models for real data are misspecified in one way or another; we 
thought it useful to know what kinds of model misspecification were most risky, and which were 
least important. 
 
However, to even start looking at whether model estimations were reasonable, the estimation 
algorithm must converge (i.e., the best parameter estimates for the specified model have been 
identified), and PROC GLIMMIX had trouble with convergence under default options for some 
distributions, particularly the exponential and Poisson distributions.  One should expect high 
convergence rates when the generating and estimating model match, total N is reasonably large, 
and the statistical model simple; this suggests that PROC GLIMMIX default settings often do not 
allow PROC GLIMMIX to produce a correct model fit, even when the correct model is correctly 
specified.  It may simply be a matter of using distribution-dependent defaults, or may be due to 
effects of the approximations used in the estimating algorithm.  In any case, other analyses, such 
as power and parameter biases, became complicated due to successful and failed estimations 
having different distributions for final parameter estimates.  We base our conclusions on only 
those simulations that converged, but that clearly biases some findings.  Our basic convergence 
finding is that, for some distributions, lack of convergence does not necessarily indicate that 
there is a problem with the model.  If one believes the model to be close to “truth”, rather than 
tinker with the model it is probably a better strategy to tinker with the options to try to get 
convergence. If that does not work, use a variance stabilizing transformation, which should at 
least provide a ball-park estimate of the importance of the various effects in the model.  Our 
results suggest that, for the kinds of data we simulated, significance tests on fixed effects for 
transformed data in a LMM framework are close to those produced by PROC GLIMMIX for a 
GLMM.  This kind of comparison does not validate the use of variance stabilizing 
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transformations; as mentioned above, their use creates other problems (that we did not 
investigate). 
 
Omitting an important random effect appears to be the most consequential model 
misspecification we found, affecting all distributions, and not remedied by including an over-
dispersion parameter, variance stabilizing transformation, or modeling using another distribution 
with a scale parameter.  Since the fixed effect tests become too liberal, this misspecification 
could result in making claims unsupported by the data.  We currently have no suggestions for a 
remedy. Very likely the missing random effect is excluded because the researcher is not aware of 
its existence (or importance) so it is never entered into the model to be checked.  What we do 
suggest is that the analyst checks the importance of all potential random effects for the data set. 
These include constraints on randomization, blocking, and interactions between these random 
effects and fixed effects.  Even though they make interpretations problematic, as a block × 
treatment interaction may, a problematic interpretation is less serious than falsely concluding a 
significant treatment effect.  
 
We found that the omission of a fixed covariate effect had little influence on testing another 
fixed effect (orthogonal to the covariate), even though this missing term also results in over-
dispersion.  The different results we found are due to how uncertainty about fixed effects is 
impacted by random effects versus by other fixed effects.  Recall that the fixed and random 
effects were approximately the same in effect size.  If we want to compare the effect of dropping 
a random effect on power, we start with the model that includes the random effect.  For this latter 
model, there is a large contribution to the uncertainty in a treatment mean due to the inclusion of 
the random effect; which is an often cited reason for considering an effect to be random (because 
one is sampling from a population of effects, so that additional sampling error due to blocks has 
to be incorporated into the uncertainty about the fixed treatment means).  If one drops that 
random effect (or considers it a fixed effect), the estimated variance of the mean decreases, 
which leads to excessively liberal F-tests.  However, including or not including a fixed effect in 
the model has much less effect on the uncertainty of the mean of another orthogonal fixed effect, 
so we saw small or no changes in power in those simulations.  Another way of thinking about it 
is that the standard error of a fixed effect mean is influenced more by a random effect than by 
another fixed effect of the same magnitude. 
 
The effect of reducing the number of blocks, even if total N is unchanged, can have a dramatic 
effect on power since the additional uncertainty in estimating random effects inflates the 
standard errors of the fixed effects.  While this decrease in power should be familiar to 
statisticians and can be determined analytically, many or most agricultural researchers are not 
aware that the number of blocks affects power.  For determining sample sizes for real 
experiments it is probably easier to run simulations with the design options and treatment 
differences of interest to see how power is affected.  Researchers pay a high price for having few 
blocks.  Our simulations results are consistent with theory:  it is better to have more blocks with 
fewer observations per block. 
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Along with better defaults (or perhaps situation dependent defaults), new users to PROC 
GLIMMIX would benefit from improved documentation that would steer them away from 
model/option combinations that make little sense (e.g., including the ‘random _residual_;’ 
statement when the conditional distribution is normal) and give warnings when default options 
are likely to create problems (as we found for the pconv default for the Poisson distribution).  As 
this kind of software becomes easier to use (which is good), it also creates the situation where 
naïve users will simply plunge into estimating models without wading through the lengthy 
documentation and without having had training on the procedure.  As we have demonstrated, this 
procedure often yields problematic analyses using default settings. We believe an appropriate 
analysis can only be obtained if one has both the background and the knowledge of the 
underlying statistics and the complications unique to GLMM model estimation, as well as 
training in PROC GLIMMIX to learn how to specify models and options.  Moving from PROC 
MIXED to PROC GLIMMIX is not as straightforward as it might seem, especially in one-
parameter cases where the familiar concept of a “residual” in linear models (and MS (error) and 
normal residual diagnostics) is no longer relevant, and the conceptual leap needed is not trivial. 
 
5.  Summary 
 
A simulation study was conducted to determine how well a commonly used statistical software 
procedure for fitting generalized linear mixed models (GLMMs), SAS PROC GLIMMIX, 
performed for a simple GLMM.  Data were generated from a wide variety of distributions for the 
same model under several conditions. Then, the generated data sets were analyzed by using the 
correct model (the generating model and estimating model were the same) and, subsequently, by 
misspecifying the estimating model.  PROC GLIMMIX default options were used in all cases.  
We simulated data from a complete block design, including a block × treatment interaction, and, 
for some sets, a covariate.  The effect sizes of the fixed and random effects were approximately 
the same, and model parameters and sample sizes were adjusted to yield 80% power for the F-
test on treatment means for a 30 block experiment.   
 
Convergence rates were low for the exponential and Poisson distributions, even when the 
generating and estimating models matched.  The normal and lognormal distributions converged 
100% of the time, but convergence rates for other distributions varied, affected by whether and 
how the models were misspecified.  The number of blocks had a large effect on power, reducing 
the number of blocks from 30 to five (with the same total N) reduced power to 40% or less.  
Omitting the block × treatment random effect in the estimating model made F-tests too liberal. 
This was most obvious when treatment means were set equal to estimate Type I error rates, some 
of which increased to about 70% for the five-block condition.  Since omitting a term makes the 
data over-dispersed relative to the estimating model, several potential remedies were 
investigated.  For all distributions, we used the appropriate variance stabilizing transformation 
and fit the transformed data using a linear mixed model.  For one-parameter members of the 
exponential family we included an over-dispersion parameter in the estimating model. We also 
tried changing the estimating model distribution to the negative binomial.  None of these 
remedial steps fixed this problem, though using a variance stabilizing transformation did 
improve convergence rates. 
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Fitting a GLMM can be difficult. Although current software such as SAS PROC GLIMMIX is 
available and offers tremendous flexibility to fit a wide range of statistical models from a wide 
range of response types, it requires knowledge of experimental design, mathematical statistics 
and numerical methods, and model diagnostics. Our project started with the intent of focusing on 
model diagnostics to help a naïve user, but we quickly learned that this was precluded by the 
complications involved in successfully fitting a GLMM, i.e., a naïve user would run into trouble 
using the default options, with model diagnostics taking a back seat.  A full evaluation of SAS’s 
GLMM fitting software would require better planning of the simulations, choosing more realistic 
scenarios, and including a much wider sampling of models and parameters than used in our 
study.  
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Figures 
 
Figure 1.  Change in power when the number of blocks is decreased.  Condition 1 is a 
randomized complete block design with 30 blocks, Condition 2 has the same number of 
replicates per block but five blocks (so 1/6 of total N), Condition 3 has five blocks but with total 
N the same as Condition 1. 
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Figure 2.  Convergence rates (light blue) and power (red) for the simulations using the Poisson 
distribution for default and LaPlace estimation options; and parameters (× 10) for the block 
variance (green) and the block × treatment interaction variance (dark blue) for the true, and the 
average estimates using the default and LaPlace options. 
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Figure 3.  Comparison of F statistics for the binomial distribution when fitting Model 2 
(generating and estimating models match) and Model 4 (estimating model missing block-by- 
treatment interaction, over-dispersion parameter added). 
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Table 1.  Statistical distributions and parameters (in link-scale) examined in simulationsa 

 

Generating 
Distribution 

Link 
Function Treatment Means σ2

Block σ2
Trt*Block β (SD)b Additional 

Parameters nc 
Variance 

Stabilizing 
Transformation 

Beta (μ,Ф) logit -1.551, -1.386, -1.237 0.16 0.09 -0.5 (0.16) Ф = a+b = 63 2 arcsine (Y½) 
Binomial (μ) logit -0.44, 0.0, 0.44 1.0 0.25 1.0 (0.33)  2, 11d arcsine (Y½) 
Exponential (μ) log 3.5, 3.75, 4.0 0.01 0.01 1.0 (0.2)  3 log(Y) 
Gamma (μ,Ф) log 4.5, 5, 5.5 1.90 1.90 1.0 (0.80) Ф = 29.68 3 log(Y) 
Lognormal (μ,Ф) identity 2.25, 2.5, 2.75 0.5 0.5 0.6 (0.25) σ2

error = 0.5 2 log(Y) 
Normal (μ,Ф) identity 59, 60, 61 6.25 3.8025 2.0 (0.25) σ2

error = 3.8025 2  
Poisson (μ) log 3.5,4.0,4.5 0.0506 0.0441 1.0 (0.2)  5 log(Y) 
 
a Shaded area indicates that the parameter or transformation is not applicable for this statistical distribution. 
b Slope of covariate (SD = standard deviation). 
c Number of replicates. 
dTwo replicates, each a draw from a binomial distribution with n = 11, same p.
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Table 2.  Conditions examined in simulations 
 

Condition Blocks Replicates 
( n ≥ 2 ) Total  N Means Estimating 

Distribution 
 Estimating 
Response 

1 30 n N µ1 ≠ µ2 ≠ µ3 True Y 
2 5 n ⅙N µ1 ≠ µ2 ≠ µ3 True Y 
3 5 6n N µ1 ≠ µ2 ≠ µ3 True Y 
4 30 n N µ1 = µ2 = µ3 True Y 
5 5 6n N µ1 = µ2 = µ3 True Y 
6 30 n N µ1 ≠ µ2 ≠ µ3 Normal Y 
7 30 n N µ1 ≠ µ2 ≠ µ3 Normal Transform(Y) 
8 30 n N µ1 = µ2 = µ3 Normal Transform(Y) 

9 30 n N µ1 ≠ µ2 ≠ µ3 
Negative 
Binomial Y 
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Table 3.  Models examined in PROC GLIMMIX 
 

Fixed Effects in 
Generating Model Model Representation of Estimated Model Glimmix Random 

Statements 

Treatment 

1 f(y)  =  μ  +  τi  +  Bj
  Random Block; 

2a f(y)  =  μ  +  τi  +  Bj
  + τB(ij) 

Random Block 
Trt*Block; 

3 f(y)  =  μ  +  τi  +  Bj
  + τB(ij) (+  Over-dispersionb) 

Random Block 
Trt*Block;  
Random _residual_; 

4 f(y)  =  μ  +  τi  +  Bj
  (+  Over-dispersionb) Random Block; 

Random _residual_; 

Treatment 
+ Covariate 

5a f(y)  =  μ  +  τi  +  β·x₁  +  Bj
  + τB(ij)  

Random Block 
Trt*Block; 

6c f(y)  =  μ  +  τi  +  Bj
  + τB(ij) 

Random Block 
Trt*Block; 

7c f(y)  =  μ  +  τi  +  Bj
  + τB(ij) (+  Over-dispersionb)  

Random Block 
Trt*Block;  
Random _residual_; 

  
a True model used to generate simulated data; τi is the ith treatment effect and Bj is the jth block effect.  All generating models 
included the same block and block × treatment interaction random effects. 
b Estimating an over-dispersion parameter is appropriate for 1-parameter distributions only. 
c Different from Model 2 in that data were generated with covariate but model was misspecified by omitting the covariate 
effect. 
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Table 4.  Impact of models and their predictable consequences for one-parameter distributions (Binomial, 
Exponential, and Poisson) and two-parameter distributions (Beta, Gamma, Log-normal, and Normal). 
  

Model What it Does Predictable Consequences 

1 Leaves out Blk Trt×  

Mean estimate (µ) may be biased since E(X) ≠ µ 
 
Over-dispersion symptoms: inflated Type I error rate, 
inadequate confidence interval (CI) coverage (due to 
underestimates of standard errors) 

2 
Consistent  with 
generating data 

(true model) 

Population average (mean) estimate is unbiased, i.e.
 
E(X) = µ 

 
Over-dispersion symptoms: none expected 

3 
Includes both 

Blk Trt× and scale 
parameter φ  

Redundant since no within-plot (subsampling) variation exists 
when data are generated from simulations and residual variance 
is unchanged. Scale parameter φ  ≅ 1  so φ  · (variance) would 
be unchanged. There is little difference between Models 2 and 3. 

4 
Leaves out Blk Trt×  

and adds a scale 
parameter φ  

Mean estimate (µ) may be biased, E(X) ≠ µ 
 
Scale parameter known to be an inadequate “fix” for over-
dispersion, with symptoms: inflated Type I error rate, 
inadequate CI coverage (although not expected to be as severe 
as Model 1 since standard error underestimate should not be as 
bad) 

5 

Consistent with new 
generating data that 
includes an added 

fixed covariate 

Population average (mean) estimate is unbiased, i.e.
 
E(X) = µ 

 
Over-dispersion symptoms: none expected 

6 Leaves out covariate 
fixed effect 

As long as the missing fixed covariate effect is orthogonal to the 
other linear predictors, then the mean and variance component 
estimates are little affected when the covariate is omitted. 

7 
Leaves out covariate 

fixed effect and adds a 
scale parameterφ  

Like Model 6, omitting the orthogonally generated covariate has 
little effect on the mean and variance component estimates. 
Adding a scale parameter as an over-dispersion “fix” is also 
ineffective in picking up information from the missing covariate 
since we expect φ  ≅ 1  so φ  · (variance) would be unchanged. 
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Table 5.  Rates of convergence obtained for various sample allocations where µ1 ≠ µ2 ≠ µ3 and the distribution used to generate 
the data was specified as the estimating distribution. Simulations were designed such that power ≈ 0.8 for 30 blocks.a,b   

Conditions Examined in Simulations 
Model Beta 

(μ,Ф) 
Binomial 

(μ) 
Exponential 

(μ) 
Gamma 
(μ,Ф) 

Lognormal 
(μ,Ф) 

Normal 
(μ,Ф) 

Poisson 
(μ) Conditionc Blocks Reps Fixed 

Effects 

1 30  n 

Treatment 

1 85.3 97.2 39.9 0.02 100 100 94.2 
 2d 83.1 99.7 26.6 99.9 100 100 45.1 
3  96.3 50.1    51.6 
4  96.5 81.8    91.9 

Treatment 
+ Covariate 

 5d 81.0 99.8 25.4 99.9 100 100 44.7 
6 79.5 99.8 16.4 77.0 100 100 44.7 
7  96.6 48.1    49.7  

2 5  n Treatment 

1 91.5 99.9 67.3 7.0 100 100 95.3 
 2d 81.4 99.9 48.5 99.4 100 100 87.5 
3  99.0 68.3    87.8 
4  99.2 85.5    98.0 

3 5 6n Treatment 

1 92.0 99.6 76.0 4.4 100 100 98.6 
 2d 87.0 97.6 53.4 99.7 100 100 96.4 
3  89.4 71.2    96.6 
4  99.1 80.9    97.9 

 

a Shaded area indicates that the model is not applicable for this statistical distribution. 
b The true power is given in  Table 7 (Condition 1:Model 2 or Model 5,when the estimating distribution was the generating 
distribution). 
c See Table 2 for complete descriptions of simulation conditions. 
d True model used to generate simulated data (see Table 3). 
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Table 6.  Rates of convergence obtained when the generating distribution, the normal distribution or the negative binomial 
distribution are specified as the estimating distribution where µ1 ≠ µ2 ≠ µ3 and the number of blocks = 30.a 

 

Estimating 
Distribution, 
Responseb 

 

Conditionc 

 

Fixed 
Effects Model 

Generating Distribution’s Convergence Rate (%) 

Beta 
(μ,Ф) 

Binomial 
(μ) 

Exponential 
(μ)  

Gamma 
(μ,Ф) 

Lognormal 
(μ,Ф) 

Normal 
(μ,Ф) 

Poisson 
(μ)  

Generating, 
Y 

1 
Treatment 

1 85.3 97.2 39.9    0.02 100 100 94.2 
2d 83.1 99.7 26.6  99.9 100 100 45.1 
3  96.3 50.1    51.6 
4  96.5 81.8    91.9 

Treatment 
+ 

Covariate 

5d 81.0 99.8 25.4 78.6 100 100 44.7 
6 79.5 99.8 16.4 77.0 100 100 44.7 
7  96.6 48.1    49.7 

Normal, Y 6 Treatment 1 100 100 100 100 100  100 
2d 100 100 99.9 100 100  100 

Normal, g(Y) 7 Treatment 1 100 100 100 100 100  100 
2d 100 100 99.9 100 100  100 

Negative 
Binomial, Y 9 Treatment 1  92.6 44.5    85.9 

2d  92.6 25.0    61.9 
 

a Shaded area indicates that the model is not applicable for this statistical distribution. 
b g(Y) is the transformed value of the response.  See Table 1 for the variance stabilizing transformation used for each 
distribution. 
c See Table 2 for complete descriptions of simulation conditions. 
d True model used to generate simulated data (see Table 3). 
  

168



Table 7.  Power of treatment comparisons obtained when the generating distribution, the normal distribution or the negative 
binomial distribution are specified as the estimating distribution where µ1 ≠ µ2 ≠ µ3 and the number of blocks = 30.a 
 

Estimating 
Distribution, 
Responseb 

 

Conditionc 

 

Fixed 
Effects Model 

Generating Distribution’s Power (%) 

Beta 
(μ,Ф) 

Binomial 
(μ) 

Exponential d 
(μ) 

Gamma 
(μ,Ф) 

Lognormal 
(μ,Ф) 

Normal 
(μ,Ф) 

Poisson 
(μ)  

Generating, 
Y 

1 
Treatment 

1 93.4 87.9 86.3 — e 92.9 93.4 94.9 
2f 81.0 80.3 85.6 77.1 79.2 81.1 78.0 
3  80.7 86.3    78.4 
4  87.4 81.1    93.8 

Treatment 
+ 

Covariate 

5f 81.0 80.3 89.4 77.1 79.1 80.7 77.7 
6 79.0 78.2 84.0 71.7 78.1 80.2 77.1 
7  78.3 82.0    78.9 

Normal, Y 6 Treatment 1 93.5 87.4 84.3 81.8 80.2  93.7 
2f 80.8 81.2 81.0 24.4 59.6  79.6 

Normal, g(Y) 7 Treatment 1 93.1 86.5 64.8 97.2 92.9  92.2 
2f 81.3 80.3 60.8 77.2 79.2  78.3 

Negative 
Binomial, Y 9 Treatment 1  48.0 86.3    93.8 

2f  46.3 85.8    79.2 
 
a Shaded area indicates that the model is not applicable for this statistical distribution. 
b g(Y) is the transformed value of the response.  See Table 1 for the variance stabilizing transformation used for each 
distribution. 
c See Table 2 for complete descriptions of simulation conditions 
d Because not all simulations converged, our definition of power is based on only those data sets where the model converged. 
e Convergence rate < 1% therefore power was not calculated. 
f True model used to generate simulated data (see Table 3) 
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Table 8.  Type I error for treatment comparisons (as a percentage) obtained when the response, Y, was modeled using the 
generating distribution, as Normally distributed data, or was transformed and modeled using the Normal distribution.  
Treatment was the only fixed effect included in the generating model.a 
 

Estimating 
Distribution, 
Responseb 

Conditionc Blocks 
 
Model 

 

Generating Distribution’s Type I Error Rate (%) 
Beta 
(μ,Ф)  

Binomial 
(μ) 

Exponential 
(μ)  

Gamma 
(μ,Ф) 

Lognormal 
(μ,Ф) 

Normal 
(μ,Ф) 

Poisson 
(μ)  

Generating, Y 
4 30 1  17.3 8.0 6.3 —d 16.4 16.8 22.0 

2 5.4 4.6 5.6 9.8 5.0 4.8 4.0 

5 5 1 69.4 34.0 7.8 98.6 69.0 69.7 63.7 
2 5.4 4.3 2.0 10.2 5.0 5.5 4.1 

Normal, g(Y) 8 30 1 16.0 8.0 5.1 53.5 16.4  15.9 
2 5.6 5.0 4.1 9.7 5.0  4.9 

 
a Shaded area indicates that the model is not applicable for this statistical distribution. 
b g(Y) is the transformed value of the response.  See Table 1 for the variance stabilizing transformation used for each 
distribution. 
c N = 90n (3 treatments × 30 blocks × n replicates) for all conditions (See Table 2). 
d Convergence rate < 1% therefore Type 1 error was not calculated  
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