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CONSIDERATIONS IN SELECTING A WATER

QUALITY SAMPLING STRATEGY

K. W. King,  R. D. Harmel

ABSTRACT. Water quality monitoring programs have expanded in an effort to quantify loadings to streams and lakes from
various watershed activities and managements. At the core of monitoring programs are strategies or schemes that determine
when and how samples are taken for estimating stream loadings. Quantification of the differences between these schemes has
not been adequately documented. An analytic approach was used to evaluate 45 commonly used sampling strategies that
included time–based (5, 10, 15, 30, 60, 120, 180, 300, and 360 min) and flow–stratified (2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 mm)
schemes using discrete and composite sampling procedures. A total of 300 storm hydrographs from 87 different watersheds
in the U.S. were coupled with two concentration graphs (a 100% positive correlation of concentration to flow, and a 100%
negative correlation to flow) to estimate average bias values for each sampling strategy. The mean bias and absolute error
for time–based sampling, as determined by the standardized root mean square error (SRMSE), always increased with a greater
sampling time interval. For time–based sampling, a positive correlated concentration graph generally resulted in
under–prediction (positive bias) from the true load, while a negative correlated concentration always resulted in
over–prediction (negative bias). For flow–stratified sampling, the direction of bias was generally reversed from the
time–based case, but the SRMSE increased with a greater flow interval. Even at the lowest flow interval used in this study
(2.5 mm), the median residual values were significantly different from zero (� = 0.05). Time discrete sampling schemes
<15–min provided the only bias and mean residual values not significantly different from zero (� = 0.05). When an equal
number of samples was obtained, the flow–stratified approach had less absolute error than did the time–based approach. The
results indicate that, prior to water quality monitoring, careful consideration should be given to the sampling strategy and
its overall impact on load estimates.
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ield/watershed–scale  water quality monitoring is
usually initiated with a goal of (1) collecting data for
model development or validation efforts,
(2) quantifying impacts of alternative management

practices, or (3) measuring loads for regulatory compliance.
Model developers depend on accurate field data for model
development and validation, and to help define processes that
are not well understood. Federal, state, and local agencies
depend on monitoring programs for regulatory compliance
procedures and to evaluate the effectiveness of subsequent
land use changes.

Pollutant loadings to water bodies have been a global
concern for some time. These loadings account for millions
of dollars of damage and require even greater amounts of
cleanup expense. Even though it was not until the Clean
Water Act of 1972 that the concept of quantifying loads from
various watershed managements and land uses was given the
name “total maximum daily load” (TMDL), many studies
had already been initiated in an effort to answer some of the
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same questions posed by that 1972 legislation (Miller, 1963;
Chapman et al., 1967; Keup, 1968; Holt, 1969; Gilbertson, et
al., 1971; Taylor et al., 1971; Romkens et al., 1973; Schuman
et al., 1973). Even though the 1972 Clean Water Act required
establishment of TMDLs, only recently have efforts regard-
ing the implementation and compliance of TMDLs been
escalated.  The basic definition of a TMDL (the maximum
amount of a pollutant that a water body can receive and still
meet water quality standards) requires monitoring of water
resources within and at the outlet of a watershed so that
concentrations and loadings may be documented (Tate et al.,
1999).

The concept of water quality sampling equipment origi-
nated in the 1930s and generally focused on the ability to
estimate soil loss. Early sampling equipment included: total
collection devices designed to collect total runoff and
sediment losses from small plots, slot–type samplers (Har-
rold and Krimgold, 1943; Parsons, 1954; Mutchler, 1963;
Dendy, 1973), non–automated suspended sediment samplers
(Federal Interagency River Basin Committee, 1948, 1952),
and automated suspended sediment samplers, which include
both single–stage (Federal Interagency River Basin Commit-
tee on Water Resources, 1963) and pump–type samplers
(Federal Interagency River Basin Committee on Water
Resources, 1962; Doty, 1970; Rausch and Haden, 1974;
Claridge, 1975; Allen et al., 1976; Martin and White, 1982).
With the exception of cosmetic changes, compactness,
portability, and electronic interfaces, which allow for a wide
range of programmable sampling schemes, present day water
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quality sampling devices do not vary significantly from the
original automated pump–type suspended sediment sam-
plers.

Monitoring programs generally focus on the needs for
regulatory compliance and for quantifying the effectiveness
of altering land–use management and activities (Tate et al.,
1999). These sampling programs generally involve a wide
range of sampling frequencies and designs (Richards and
Holloway, 1987) that are dependent on both temporal (storm
event, seasonal base flow, and annual fluctuations) and
spatial (small plots, fields, watersheds, and river basins)
scales. Sampling strategies are generally stratified by either
time or flow and include both discrete and composite
sampling. Attempts to compare different sampling schemes
using a Monte Carlo approach (Richards and Holloway,
1987; Miller et al., 2000) and measured data (Stevens and
Smith, 1978; Yaksich and Verhoff, 1983; Shih et al., 1994;
Thomas and Lewis, 1995; Robertson and Roerish, 1999)
have been accomplished on generally large watersheds.

Richards and Holloway (1987) used a Monte Carlo
approach to evaluate seven sampling strategies, which
included non–stratified fixed frequency and flow–stratified
sampling techniques on three watersheds ranging in size from
386 to 17000 km2. The Richards and Holloway (1987)
approach provided for a maximum of four samples per day
using a fixed frequency scheme. The error associated with the
fixed frequency approach was attributed to inadequate
measurements of large fluxes during storm flows. Flow–
stratified sampling proved to better represent the true load in
all tested scenarios.

Robertson and Roerish (1999) used measured data from
eight agricultural watersheds (14 to 110 km2) in Wisconsin to
evaluate ten sampling strategies which include three fixed–
period sampling schemes and seven fixed–period with storm
chasing (a higher frequency of samples is taken during storm
flow events) sampling schemes. The measured data included
bimonthly grab samples and approximately 10 to 20 storm
events with 6 to 10 samples per event. Robertson and Roerish
(1999) concluded that the best strategy for arriving at daily
loads involves storm chasing, while the least precise methods
included single–stage and peak–flow sampling techniques.

Previous studies have generally focused on larger, contin-
uous flowing streams, and the findings suggest that more
intensive forms of sampling generally result in more accurate
estimates of the true load. While attempts have been made to
compare one, two, or even several sampling schemes to the
true load, a comprehensive analytical approach that quanti-
fies the tradeoffs between the differing schemes has not been
well documented.

Discrete sampling implies the collection of one sample
per bottle, while composite sampling involves the collection
of more than one sample per bottle. Time–based sampling is
based on a pattern of times (e.g., every 15 min), while
flow–stratified sampling is based on flow past a certain point
(e.g., every 2.5 mm volumetric depth over the watershed).
Discrete time–based and flow–stratified approaches are
illustrated in figure 1.

OBJECTIVES

With the onset of TMDL legislation, data collection
efforts will continue to intensify in many watersheds. One of
the primary questions that will arise out of this effort will
concern the optimal sampling strategy that adheres to the
constraints of economic efficiency (number of samples that
have to be analyzed) and accurate estimation of the true load.
This effort will try to answer that question for storm flow
sampling. Specifically, the objectives of this study are to use
an analytic approach to investigate and quantify the tradeoffs
and impacts on loading estimates from storm flow using
several common sampling strategies that include various
time–based and flow–stratified discrete and composite
schemes.

METHODS AND PROCEDURES
SAMPLING STRATEGIES

A wide range of sampling schemes was selected to
properly depict the many schemes presently used. The
sampling strategies include an array of discrete time–based
and flow–stratified schemes as well as procedures that
represent a broad spectrum of time and flow composite
sampling. The time–based sampling schemes tested involved

Figure 1. Example hydrograph from Walnut Gulch, Arizona (drainage area 824 ha), with discrete time–based and flow–stratified sampling strategies
overlaid.
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Table 1. Location of storm hydrographs.

Location
No. of

Watersheds
Total No.
of Events

Branch, Arkansas 1 2

Caulksville, Arkansas 1 4
Chisomville, Arkansas 2 10
Safford, Arizona 1 1
Walnut Gulch, Arizona 4 7

Ralston Creek, Iowa 1 5

Treynor, Iowa 1 1
Reynolds Creek, Idaho 1 9
Horsepen Creek, Louisiana 1 1
Creek Draw, Mississippi 1 1

Long Creek, Mississippi 1 1

Oxford, Mississippi 7 21
Short Creek, Mississippi 1 3
White Oak Creek, Mississippi 1 1
Ahoskie, North Carolina 3 6

Hastings, Nebraska 4 24

Coshocton, Ohio 6 21
Big Creek, Oklahoma 1 1
Canyon View Creek, Oklahoma 1 1
Chickasha, Oklahoma 4 6

Clear Creek, Oklahoma 1 1

Pine Creek, Oklahoma 1 1
Rock Creek, Oklahoma 1 1
Stidham Creek, Oklahoma 1 1
Stillwater, Oklahoma 1 4

Browns Creek, Tennessee 1 1

Coon Creek, Tennessee 1 1
Red River, Tennessee 1 1
Richland Creek, Tennessee 1 2
Wartrace Creek, Tennessee 1 1

Calveras, Texas 1 1

Cow Bayou, Texas 1 6
Deep Creek, Texas 2 7
Elm Fork, Texas 1 3
Escondido Creek, Texas 1 2

Green Creek, Texas 1 5

Honey Creek, Texas 2 15
Keegans Bayou, Texas 1 2
Little Elm Creek, Texas 1 8
Little Fossil Creek, Texas 1 1

Mukewater Creek, Texas 1 4

North Creek, Texas 1 6
Pin Oak Creek, Texas 1 5
Little Pond Creek, Texas 1 2
Riesel, Texas 7 70

Sims Bayou, Texas 1 3

Wilbarger Creek, Texas 1 4
Brush Creek, Virginia 1 1
Foster Creek, Virginia 1 3
Rocky Run, Virginia 1 2

Little Winns Creek, Virginia 1 2

North Danville, Vermont 1 1
Colby, Wisconsin 1 2
Fennimore, Wisconsin 1 2
La Crosse, Wisconsin 2 4

discrete sampling at 5, 10, 15, 30, 60, 120, 180, 300, and
360 min intervals. Time–based composite samples (3 and
6 samples per bottle) were also investigated using the same

Table 2. Watershed area, runoff amount and duration, and peak flow
distribution statistics for 300 hydrographs used in the study.

Statistic

Drainage
Area
(ha)

Runoff
Amount

(mm)

Runoff
Duration

(min)

Peak
Flow

(m3 s–1)

Time to
Peak
(min)

Mean 1228 31.8 1205 24.4 322

25th percentile 234 13.2 560 3.9 120
Median 596 26.1 850 14.6 200
75th percentile 1368 47.0 1485 30.3 375
Standard deviation 1494 26.6 1002 31.8 368
Minimum 0.1 0.01 75 0.003 13
Maximum 6294 134.2 6180 202.5 2936

time intervals. For example, a 3–sample, 5–min, time–based
composite sample would represent 15 min of flow with one
concentration calculated as the average concentration from
samples pulled at 5, 10, and 15 min. Discrete flow–stratified
sampling was based on flow increments of 2.5, 5.0, 7.5, 10.0,
12.5, and 15.0 mm. A flow–stratified composite approach
(3 and 6 samples per bottle) using the same flow increments
was also completed. For example a 3–sample, 2.5 mm,
flow–stratified composite sample would represent 7.5 mm of
volumetric depth, and the concentration would be the
average of the 2.5, 5.0, and 7.5 mm point concentrations.
These schemes allowed the evaluation of 45 different
sampling strategies.

ANALYTIC APPROACH
Hydrographs

Data from 300 storm events over an array of locations in
the U.S. (table 1) were used as input for runoff hydrographs
so that several hydrograph shapes could be evaluated. Flow
between hydrograph points was assumed to be linear, and
interpolation between the points was completed to form
1–min hydrographs. The 1–min hydrographs were used to
approximate the true discharge volume. The shapes of the
hydrographs varied from short–duration high peaks to
long–duration low peaks, with several hydrographs having
double peaks as well as those characterized by long–duration
rising limbs (table 2).

Concentration Graphs

One of the difficulties in using an analytical approach to
achieve the objectives of this study is developing a con-
centration graph. Many important water quality parameters,
including sediment, nitrate, dissolved phosphorus, etc.,
correlate well with discharge but can take on an infinite
number of shapes. However, regardless of the shape, the
graph will be correlated with the hydrograph in the range of
–1 to +1. Therefore, a hypothetical concentration graph
corresponding to 100% positive correlation and 100%
negative correlation of concentration to the hydrograph was
assumed. The concentration graphs were scaled such that the
maximum concentration corresponding to the peak flow in
the 100% positive correlation case was equivalent to unity,
while the value corresponding with the baseline was zero.
Conversely, in the 100% negative correlation case, the
concentration associated with the peak flow was zero, and the
concentration associated with the baseline was unity. This
approach allows for an envelope to be formed that encloses
the maximum expected bias. Shih et al. (1994) used a similar
approach but only evaluated a limited set of time composite
samples.
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Load Estimates

The hydrographs were coupled with the concentration
graphs to calculate load estimates. The 1–min hydrographs
along with the corresponding 1–min concentration graphs
were assumed to represent the true load. The flow volume
associated with each concentration was calculated from the
midpoint of the preceding time/flow interval to the midpoint
of the following time/flow interval assuming a linear
relationship between hydrograph points. The load for each
sampling point was calculated as the concentration associat-
ed with that point multiplied by the flow during the sampling
interval. The summation of the incremental loads was
assumed to represent the true load.

STATISTICAL ANALYSIS

A combination of two statistics and a statistical test was
selected to evaluate and compare the sampling strategies.
The two selected statistics were bias and standardized root
mean square error (SRMSE), and the test was the one–sample
Wilcoxon signed rank test.

For each hydrograph, the bias in load estimates was
determined for both the positive and negative correlation
cases when applicable. In short–duration or low–runoff
events, the longer sampling duration or larger volume
flow–stratified techniques may not be applicable. When the
sampling schemes were not applicable, those hydrographs
were omitted from the analysis. Percent bias as defined by
Shih et al. (1994) is:

( )
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where
yi = ith estimated value
xi = ith true value
n = number of data pairs.

The SRMSE allows a term–by–term comparison and
provides a non–dimensional estimate of the accuracy of the
estimated load obtained by using a selected strategy
compared to the true load. SRMSE is also a non–symmetric
statistic but facilitates explanation when both over– and
under–prediction are present.

The Wilcoxon signed rank test is a non–parametric
statistic of the median. Once the distribution of the residuals
between the true loads and estimated loads was determined
not to be normal, the Wilcoxon test was performed for each
of the 45 sampling strategies using both positive and negative
correlation cases to determine whether the median residual
value was different from zero (� = 0.05). The Wilcoxon
statistic assumes symmetry around the median of the data.

RESULTS
TIME–BASED SAMPLING

Assuming continuous sampling (i.e., ignoring the physi-
cal constraints of a maximum 24 bottles per sampler prior to
changing bottles), the average bias associated with each
sampling scheme increases with time between samples
(fig. 2). The average bias also increases when moving from
discrete sampling to composite sampling. A similar escala-
tion in average bias is observed when the number of samples
that are composited is increased. While compositing permits
a longer runoff event to be monitored, the tradeoff is a less
accurate representation of the true load. For example, if a
storm event is monitored at a time discrete frequency of
15 min, then the maximum expected average bias (under–
prediction, 100% positive correlation of concentration graph
with hydrograph) is 0.4%, while the minimum expected
average bias (over–prediction, 100% negative correlation of
concentration graph with hydrograph) is –0.7% (table 3). If
a composite sampling approach (3 samples per bottle) is used
for that same event, then the positive bias could be expected
to increase to 5.8%, while the negative bias decreases to
–7.2%. A composite approach of 6 samples per bottle further
increases the absolute bias. An analysis of the SRMSE for
time–based sampling yields similar results (table 4). For the
same 15–min time discrete sampling scheme, the SRMSE is
0.41% for the positive correlation case and 0.57% for the
negative correlation case. The similarity in results is an
indication that most loads were consistently under–predicted
for the positive correlation and over–predicted for the
negative.

One common constraint of monitoring is economic
feasibility (to use as few of samples as possible and still
represent the true load). To evaluate the measured load for
each sampling scheme against the true load, an assumption
of normality was made, and the mean bias estimates were
compared to zero (true load bias value). In the case of time
discrete sampling, the bias becomes statistically different
(�=0.05) from zero at time intervals greater than 15 min
(table 3). Using a composite approach of 3 and 6 samples per
bottle results in all bias values being significantly different
from zero. The normality assumption was tested using the
Anderson–Darling test and found to be false. The Wilcoxon
non–parametric  test was then run on the residuals of the true
load and estimated loads for each sampling scheme (table 4).
The median residual for both 10– and 15–min time discrete
sampling schemes was not significantly different (� = 0.05)
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 Figure 2. Mean percent bias in the load calculation from (a) time discrete samples, (b) time composite samples (3 samples/bottle), and (c) time composite
samples (6 samples/bottle).
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Table 3. Statistical comparison of the mean percent bias with respect to zero for each time–based sampling strategy.

Sample
Time Discrete Time Composite (3 samples) Time Composite (6 samples)

Sample
Interval
(min)

No. of
Events

100% Pos.
Correlation

100% Neg.
Correlation

100% Pos.
Correlation

100% Neg.
Correlation

100% Pos.
Correlation

100% Neg.
Correlation

5 300 0.09 N[a] –0.25 N 1.25 Y –1.64 Y 3.62 Y –4.58 Y

10 300 –0.05 N –0.12 N 3.16 Y –4.09 Y 8.85 Y –11.1 Y
15 300 0.40 N –0.74 N 5.78 Y –7.24 Y 13.6 Y –16.9 Y
30 300 1.80 Y –2.24 Y 12.9 Y –15.8 Y 24.8 Y –31.5 Y
60 300 4.76 Y –5.37 Y 23.2 Y –29.2 Y 37.7 Y –48.4 Y
120 299 12.5 Y –14.5 Y 37.3 Y –47.3 Y 50.6 Y –64.9 Y
180 299 23.9 Y –30.0 Y 48.7 Y –62.9 Y 57.7 Y –74.6 Y
300 285 43.2 Y –52.6 Y 60.9 Y –77.1 Y 65.1 Y –82.9 Y
360 271 52.3 Y –65.3 Y 66.2 Y –84.1 Y 69.8 Y –88.8 Y

[a] Y = mean bias in load estimates for that sampling scheme is significantly different from zero; N = mean bias in load estimates for that sampling scheme is
not significantly different from zero using a t–test (α = 0.05).

Table 4. Statistical analysis including estimated median residuals, associated P–values, and
standardized root mean square error (SRMSE) of time–based sampling strategies.

Positive Correlation Negative Correlation

Sampling Strategy
Estimated Median

Residual P–value[a]
SRMSE

(%)
Estimated Median

Residual P–value[a]
SRMSE

(%)

Time discrete

5 min –0.018 0.000 0.04 0.018 0.000 0.06
10 min 0.008 0.112 0.26 –0.009 0.092 0.36
15 min –0.029 0.057 0.41 0.031 0.044 0.57
30 min 0.241 0.000 2.43 –0.235 0.000 3.37
60 min 1.51 0.000 8.52 –1.45 0.000 11.8
120 min 2.83 0.000 15.5 –2.67 0.000 21.6
180 min 10.5 0.000 29.4 –10.4 0.000 40.4
300 min 26.9 0.000 54.7 –26.2 0.000 75.6
360 min 39.9 0.000 64.5 –39.8 0.000 88.8

Time composite (3 samples)

5 min 0.36 0.000 0.53 –0.36 0.000 0.74
10 min 1.35 0.000 1.74 –1.35 0.000 2.41
15 min 2.70 0.000 3.43 –2.69 0.000 4.76
30 min 8.23 0.000 11.1 –8.22 0.000 15.4
60 min 19.2 0.000 22.1 –19.1 0.000 30.6
120 min 33.9 0.000 39.8 –33.9 0.000 55.1
180 min 44.9 0.000 55.6 –44.5 0.000 76.9
300 min 60.5 0.000 78.8 –59.5 0.000 109
360 min 70.6 0.000 87.6 –70.1 0.000 121

Time composite (6 samples)

5 min 1.47 0.000 2.02 –1.47 0.000 2.8
10 min 4.74 0.000 5.34 –4.74 0.000 7.4
15 min 8.62 0.000 11.1 –8.62 0.000 15.4
30 min 21.4 0.000 22.5 –21.4 0.000 31.2
60 min 36.4 0.000 44.2 –36.2 0.000 61.4
120 min 53.2 0.000 66.9 –52.9 0.000 92.9
180 min 60.0 0.000 8.2.2 –59.6 0.000 114
300 min 71.5 0.000 97.8 –70.9 0.000 136
360 min 80.3 0.000 101 –79.8 0.000 141

[a]   P–values < 0.05 indicate that the median residual value is significantly different from zero using the non–parametric Wilcoxon Signed Rank test.

from zero for the positive correlation. In the case of negative
correlation,  only the 10–min time discrete strategy was not
significantly different from zero. In both cases, the median
residual associated with the 5–min time discrete strategy was
significantly different from zero, which could only be
explained by the small standard deviation (0.09) of the
residuals for that strategy and the fact that the symmetry
assumption was not true. Using the previous example of
discrete versus composite sampling, it can be concluded that
the 15–min discrete samples would represent the true load

(bias not significantly different from zero), while the
composite approach of 3 and 6 samples/bottle would be
significantly different from the true load.

FLOW–STRATIFIED SAMPLING

The average absolute bias associated with flow–stratified
sampling generally increased with greater flow interval but
then began to converge past a certain point, most likely due
to a combination of a reduced number of samples, lower
number of storms available for analysis, and cancellation of



69Vol. 46(1): 63–73

–100
–80
–60
–40
–20

0
20
40
60
80

100

0 2 4 6 8 10 12 14 16

Flow (mm)

%
 B

ia
s

100%  pos. correlation 100% neg. correlation

(a)

–100
–80
–60
–40
–20

0
20
40
60
80

100

0 10 20 30 40 50

Flow (mm)

%
 B

ia
s

100%  pos. correlation 100% neg. correlation

(b)

–100
–80
–60
–40
–20

0
20
40
60
80

100

0 20 40 60 80 100

Flow (mm)

%
 B

ia
s

100%  pos. correlation 100% neg. correlation

(c)

Figure 3. Mean percent bias in the load calculation from (a) flow discrete samples, (b) flow composite samples (3 samples/bottle), and (c) flow composite
samples (6 samples/bottle).

biases due to similar magnitude positive and negative biases
(fig. 3). Assuming continuous sampling, average bias from
flow–stratified discrete sampling initiated at 2.5 mm was
generally negative (over–prediction) for the 100% positive
correlated case and always positive (under–prediction) for
the 100% negative correlated case (fig. 3a). Compositing the
samples tended to reduce the level of absolute bias. For

example, if a flow–stratified sampling scheme initiated at
5 mm runoff were used, the average bias from a 100%
positive correlated concentration graph would be –5.4%,
while the average bias associated with a 100% negative
correlated concentration graph would be 12.9% (table 5).
Composite sampling (3 samples per bottle) reduces the
average absolute bias to –3.6% (positive correlated con–
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Table 5. Statistical comparison of the mean percent bias with respect to zero for each flow–stratified sampling strategy.

Sample
Flow Discrete Composite (3 samples) Composite (6 samples)

Sample
Interval
(mm)

No. of
Events

100% Pos.
Correlation

100% Neg.
Correlation

100% Pos.
Correlation

100% Neg.
Correlation

100% Pos.
Correlation

100% Neg.
Correlation

2.5 258 –3.57 Y[a] 6.63 Y –3.97 Y 7.30 Y –3.46 Y 6.73 Y

5.0 255 –5.35 Y 12.9 Y –3.60 Y 10.8 Y –2.49 Y 9.54 Y
7.5 251 –5.90 Y 16.8 Y –2.82 Y 13.0 Y –1.64 Y 11.7 Y
10.0 245 –1.25 N 10.9 Y 2.55 N 6.49 Y 3.52 Y 5.39 Y
12.5 236 4.44 Y 1.38 N 8.96 Y –3.82 N 9.58 Y –4.58 N
15.0 214 4.04 N 5.52 N 8.46 Y 0.31 N 8.84 Y –0.26 N

[a] Y = mean bias in load estimates for that sampling scheme is significantly different from zero; N = mean bias in load estimates for that sampling scheme is
not significantly different from zero using a t–test (α = 0.05).

Table 6. Statistical analysis including estimated median residuals, associated P–values, and
standardized root mean square error (SRMSE) of flow–stratified sampling strategies.

Positive Correlation Negative Correlation

Sampling Strategy
Estimated Median

Residual P–value[a]
SRMSE

(%)
Estimated Median

Residual P–value[a]
SRMSE

(%)

Flow discrete

2.5 mm –2.75 0.000 3.98 4.93 0.000 9.06
5.0 mm –7.04 0.000 10.4 10.7 0.000 22.7
7.5 mm –10.3 0.000 13.8 17.9 0.000 31.8
10.0 mm –9.36 0.000 20.1 16.5 0.000 43.8
12.5 mm –6.62 0.000 27.6 12.8 0.000 51.1
15.0 mm –6.01 0.000 29.3 15.4 0.000 56.2

Flow composite (3 samples)

2.5 mm –4.36 0.000 4.77 6.48 0.000 10.4
5.0 mm –6.83 0.000 10.1 10.5 0.000 22.7
7.5 mm –7.66 0.000 13.2 15.0 0.000 30.7
10.0 mm –4.60 0.000 18.5 10.6 0.000 41.4
12.5 mm –0.97 0.358 26.4 5.86 0.000 49.0
15.0 mm –0.26 0.824 28.9 8.64 0.000 54.7

Flow composite (6 samples)

2.5 mm –4.52 0.000 4.77 6.64 0.000 10.5
5.0 mm –5.68 0.000 9.26 9.25 0.000 21.7
7.5 mm –5.82 0.000 12.4 12.7 0.000 29.8
10.0 mm –2.89 0.000 17.6 8.56 0.000 40.4
12.5 mm 0.29 0.766 25.7 4.29 0.004 47.4
15.0 mm 0.35 0.716 28.4 7.50 0.000 53.5

[a] P–values < 0.05 indicate that the median residual value is significantly different from zero using the non–parametric Wilcoxon Signed Rank test.

centration) and 10.8% (negative correlated concentration).
Understanding the convergence of bias can be facilitated by
examining the SRMSE. Since the convergence is in part a
result of both positive and negative biases, the SRMSE will
eliminate that concern. The SRMSE associated with flow
discrete sampling consistently increased for both positive
and negative correlated cases (table 6). The SRMSE for the
5–mm flow discrete example used previously is considerably
larger than the absolute mean bias values (both positive and
negative cases) for the same strategy, which indicates a more
equal distribution of biases for over– and under–prediction.
The nearly equal SRMSE for both (3 and 6 samples)
composite sampling schemes should be expected since the
amount of discharge is consistent.

Assuming normality and comparing the average bias
values to the true load bias (zero) resulted in most strategies
being significantly different (� = 0.05) from zero (table 5).
Those strategies not significantly different from zero were
most likely a result of the nearly equal distribution in
magnitudes of positive and negative biases. A test of the
normality assumption using the Anderson–Darling test

revealed a non–normal distribution. As with the time–based
strategies to account for the non–normality, the Wilcoxon
non–parametric  test was run on the median residual values
for each strategy and compared to zero (table 6). With the
exception of the 12.5 and 15.0 mm, 3– and 6–sample
composite strategies, all median residual values were
significantly different from zero (� = 0.05). These findings
suggest that on average for the watersheds used in this study,
an interval smaller than 2.5 mm is needed to capture the true
load.

DISCUSSION
As a result of the various storm distribution characteristics

and the time and flow intervals selected, direct comparisons
between time–based and flow–stratified sampling is diffi-
cult. Of the 300 events used in this study, more events had
runoff durations adequate to test time–based sampling in the
range of 5 to 360 min than had runoff volumes available to
sample in the range of 2.5 to 15 mm volumetric flow depths
for flow–stratified sampling. The number of events available
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Table 7. Maximum, minimum, mean, and median number
of samples taken for each time and flow discrete

sampling strategy[a] for the 300 events used.

Sampling
Strategy

Maximum
Number of

Samples

Minimum
Number of

Samples

Mean
Number of

Samples

Median
Number of

Samples

Time discrete

5 min 1237 8 234 164
10 min 619 4 117 82
15 min 413 3 78 55
30 min 207 2 39 28
60 min 104 0 20 14
120 min 52 0 10 7
180 min 35 0 6 5
300 min 21 0 4 3
360 min 18 0 3 3

Flow discrete

2.5 mm 53 0 12 10
5.0 mm 26 0 6 5
7.5 mm 17 0 3 3
10.0 mm 13 0 2 2
12.5 mm 10 0 2 2
15.0 mm 8 0 1 1

[a] Number of samples for the composite schemes can be determined by di-
viding the presented sample number by the number used in the composite
(3 or 6 samples).

for the time–based schemes ranged from the total available
300 events at a 5–min sampling scheme to 271 for the
360–min scheme (table 3). The number of storms with
adequate flow for sampling at the 2.5–mm flow–stratified
scheme was 258 and decreased to 214 at the 15–mm flow
interval (table 5). The number of samples taken also varied
with the differing schemes (table 7). For a 59.3 mm runoff
event with a duration of 1185 min, the number of time–based
samples ranged from 235 for the 5–min strategy to 4 for the
360–min scheme. For the same event, the number of
flow–stratified samples taken was 23 when initiated at
2.5 mm and decreased to 3 at a 15–mm flow interval. When
an approximate number of samples was used to arrive at the
load estimates (120–min time discrete, and 5–mm flow
discrete), the flow–stratified approach showed a marked
improvement in absolute bias and SRMSE, which should be
expected since more samples are taken during periods of
higher flows.

The average bias results for time–based sampling were
consistent with expectations, namely that the positive
correlated case would be under–predicted (positive bias) and
the negative correlated case over–predicted (negative bias).
The larger the time interval the greater the chance of missing
the values around the peak flow, which in predominantly
non–point source watersheds often corresponds to the time of
greatest concentration (Richards and Holloway, 1987). A
smaller time interval allows for more data around the peak
flow but requires more sample analysis.

Unlike time–based sampling, the results of flow–stratified
sampling indicate that the average bias associated with a
positive correlation was generally negative (over–predic-
tion), while the bias associated with a negative correlation
was usually positive (under–prediction). These results imply
that the concentration associated with the flow interval is an
overestimation of the average concentration for that interval.

In both cases (time and flow), the non–symmetry
associated with bias is evident. This result can be attributed
to the differing magnitudes of true loads (one for the negative
correlated case and one for the positive correlated case). In
most cases, the true load for the negative correlated approach
is much less than the true load for the positive correlated
concentration approach. Even though the magnitudes of
over–prediction and under–prediction are similar, the per-
cent bias in the negative correlated case is more pronounced
because of the smaller true load value. Thus, the absolute
average bias associated with the negative correlated case
should be expected to be greater than the positive correlated
case regardless of sampling scheme, which is evidenced by
examination of the SRMSE for each scheme.

With respect to flow–stratified sampling, the 7.5 mm
amount appears to be the threshold interval for the storms
used in this analysis where the peaks are adequately captured.
Once the interval exceeds 7.5 mm, the average bias curves
start to converge. The convergence, as previously noted,
results from a combination of the sample interval being too
large, fewer number of storms with adequate flow for
analysis, and equal distribution of total magnitudes of biases.
Based on the bias, SRMSE, and Wilcoxon tests, a flow–strati-
fied interval less than 2.5 mm (the minimum flow discrete
amount analyzed in this study) is needed to statistically
preserve the true load.

ADVANTAGES AND DISADVANTAGES
Depending on the field/watershed to be monitored and the

economic and physical constraints of the monitoring pro-
gram, each strategy has advantages and disadvantages.
Knowledge of the watershed runoff characteristics such as
average annual runoff volume and general runoff durations
will aid in selecting a sampling strategy.

Time–based discrete sampling is simple since time is easy
to measure. However, for a small sampling interval (in this
study shown to be approximately 15 min or less to preserve
the true load), the number of samples will generally be large,
limiting the sampling of storms with large runoff durations.
In addition, to convert the concentrations to loads, a
cross–sectional area will need to be measured and a stage
discharge curve developed. In many remote locations, this
cross–sectional area often changes with time. However, if
concentrations are sufficient based on monitoring objectives,
then the need for discharge amounts is irrelevant.

A major advantage of flow–stratified discrete sampling is
more frequent sampling during high flows. The disadvantage
of a flow–stratified approach is the requirement of a true
control volume to measure discharge (flow interval) and the
ability to continuously monitor the stage. Unlike the
time–based scheme, even if concentrations are sufficient, a
control volume is needed to pace the flow sampling. This
requirement is often cost prohibitive or not feasible due to a
remote location. In addition, during large magnitude runoff
events, the number of samples allowed by the sampler prior
to emptying and resetting may be exceeded. If the samples
cannot be emptied and transferred, then the full event may not
be sampled.

Composite sampling offers an economic advantage in that
fewer samples are analyzed, permitting longer duration and
larger magnitude events to be sampled. One drawback of
composite sampling is the difficulty in associating the
concentration with flow, especially in time–based sampling
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schemes. Most importantly, as shown in this study, composite
sampling with respect to time actually increases the relative
and absolute bias. With respect to flow–stratified composite
sampling, the absolute bias (SRMSE) does not change, which
should be expected since flow is constant and the only
averaging occurring is over the concentration values. In
addition to the already noted negatives of composite
sampling is the lack of knowledge on contaminant distribu-
tion throughout the sampling event.

STUDY LIMITATIONS

The results are a compilation of 300 separate runoff events
on 87 watersheds with an assumption that continuous
sampling (ignoring bottle number constraint) was possible.
The statistical results are based on 300 events not filtered by
watershed characteristics such as watershed size, time of
concentration,  or probable maximum peak flow. The inclu-
sion of these characteristics was outside the scope of this
study but should be expected to enhance the findings of this
study. The continuation of this study will focus on determin-
ing a relationship between watershed characteristics and
sampling strategies to determine a best sampling scheme for
minimizing error while maximizing efficiency (small num-
ber of samples to be analyzed).

SUMMARY AND CONCLUSIONS
Water quality concerns, TMDLs, and water management

planning have expanded field and watershed monitoring
efforts. Water quality monitoring programs typically rely on
automated samplers for collecting storm runoff samples. The
sampling devices are usually programmable and allow for a
wide array of sampling schemes that include discrete and
composite time–based and flow–stratified approaches. For-
ty–five different sampling strategies were evaluated using
both a 100% positive correlated concentration graph to
hydrograph and a 100% negative correlated concentration
graph to hydrograph to encompass the range of possible
values. The resulting load estimates were compared to the
true load using bias, SRMSE, and a one–sample Wilcoxon
signed rank test. Mean bias values and median residual
values were statistically compared to zero for each sampling
strategy.

Results from the analysis of time–based strategies indi-
cate that smaller time intervals provide smaller mean bias
and SRMSEs, and preserve the true load representation.
However, to sample entire storms, increased time intervals or
composite sampling schemes, which have been shown to be
significantly different from the true load, are typically used.
Mean bias and median residual estimates associated with the
larger time discrete (>15–min) and all time composite
strategies were different from zero, an indication that those
schemes do not represent the true load.

Calculated mean biases from the flow–stratified approach
were coupled with SRMSE to more accurately understand the
load estimates for each strategy. The absolute error derived
from SRMSE increased consistently with a larger flow
interval. All tested flow–stratified discrete sampling
schemes were unable to statistically preserve the true load.
Composite sampling using a flow–stratified approach pro-
vided no statistical advantage or disadvantage over flow
discrete sampling but did offer an economic advantage in that

fewer samples could be analyzed and still maintain the same
absolute error. When a nearly equal number of samples was
used, the flow–stratified approach provided a marked decline
in absolute error.

Prior to implementation of a sampling program, it is
recommended that some knowledge of the watershed runoff
characteristics  be obtained and studied, if possible. A
thorough understanding of the monitoring goal (e.g., will
loadings need to be calculated or are concentrations suffi-
cient?) is also important. Expectant length of runoff should
also be considered. Short–duration runoff events should not
have long times or large flows between samples. Conversely,
a long–duration runoff event should not use too small a
sampling time or flow to avoid a large number of samples.
Water quality planners and managers informed with some
knowledge of the watershed runoff characteristics coupled
with these reported findings should be able to confidently
implement a water quality monitoring program capable of
representing the true load while meeting economic
constraints.
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