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CUMULATIVE UNCERTAINTY IN MEASURED STREAMFLOW

AND WATER QUALITY DATA FOR SMALL WATERSHEDS

R. D. Harmel,  R. J. Cooper,  R. M. Slade,  R. L. Haney,  J. G. Arnold

ABSTRACT. The scientific community has not established an adequate understanding of the uncertainty inherent in measured
water quality data, which is introduced by four procedural categories: streamflow measurement, sample collection, sample
preservation/storage,  and laboratory analysis. Although previous research has produced valuable information on relative
differences in procedures within these categories, little information is available that compares the procedural categories or
presents the cumulative uncertainty in resulting water quality data. As a result, quality control emphasis is often misdirected,
and data uncertainty is typically either ignored or accounted for with an arbitrary margin of safety. Faced with the need for
scientifically defensible estimates of data uncertainty to support water resource management, the objectives of this research
were to: (1) compile selected published information on uncertainty related to measured streamflow and water quality data
for small watersheds, (2) use a root mean square error propagation method to compare the uncertainty introduced by each
procedural category, and (3) use the error propagation method to determine the cumulative probable uncertainty in measured
streamflow, sediment, and nutrient data. Best case, typical, and worst case “data quality” scenarios were examined. Averaged
across all constituents, the calculated cumulative probable uncertainty (±%) contributed under typical scenarios ranged
from 6% to 19% for streamflow measurement, from 4% to 48% for sample collection, from 2% to 16% for sample
preservation/storage,  and from 5% to 21% for laboratory analysis. Under typical conditions, errors in storm loads ranged
from 8% to 104% for dissolved nutrients, from 8% to 110% for total N and P, and from 7% to 53% for TSS. Results indicated
that uncertainty can increase substantially under poor measurement conditions and limited quality control effort. This
research provides introductory scientific estimates of uncertainty in measured water quality data. The results and procedures
presented should also assist modelers in quantifying the “quality” of calibration and evaluation data sets, determining model
accuracy goals, and evaluating model performance.

Keywords. Error propagation, Nonpoint-source pollution, Nutrient transport, Water quality monitoring.

lthough sampling to assess transport of water
quality constituents in runoff has been conducted
for many years, relatively little information is
available on the uncertainty of measured data.

The need to understand uncertainty in measured water quali-
ty data has recently increased because of the adverse impact
of diffuse or nonpoint-source pollution on rivers, lakes, and
coastal waters (USEPA, 2000) and the intensified disputes re-
garding relative contributions of diffuse and point-source
pollution (e.g., McFarland and Hauck, 2001). The issue of
uncertainty is particularly important in water quality model-
ing because models are increasingly used to guide decisions
regarding water resource policy, management, and regula-
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tion (Beck, 1987; Sharpley et al., 2002). It is important that
decision makers appreciate the uncertainty in measured wa-
ter quality data and its effect on model output. The scientific
community, however, has not compiled an adequate under-
standing on the uncertainty of measured runoff water quality
data and has not adequately described the effects of uncer-
tainty on water quality management.

Although the issue of uncertainty is germane to many
water resource issues such as water quality standards and
discharge permitting, the need for scientifically defensible
uncertainty estimates is particularly evident in Total Maxi-
mum Daily Load (TMDL) projects. In typical TMDLs,
measured water quality data are used to calibrate watershed
models and evaluate their output, which often are the basis of
source load allocation. Although TMDLs are required to
include a margin of safety to account for uncertainty in
allocations (40 CFR 130.7), scientific guidance on margin of
safety determination is limited. As a result, arbitrary margins
of safety are often assigned to account for uncertainty, in spite
of research that indicates the need for rigorous uncertainty or
risk analysis (e.g., Hession et al., 1996). Quantifying the
uncertainty associated with measured water quality data
(error propagation) is a vital component of scientifically
defensible TMDL modeling analyses.

While previous research has produced valuable knowl-
edge of the uncertainty related to various sampling proce-
dures, no complete error propagation analysis, including all
error sources, has been conducted on measured water quality
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data for small watersheds. Uncertainty in measured water
quality data is introduced by four procedural categories:
streamflow measurement, sample collection, sample pres-
ervation/storage,  and laboratory analysis. Each of these
procedural categories is described in detail in the following
section. Data processing and management can also contrib-
ute uncertainty to measured data because of missing data,
assumptions made to estimate missing values, and mistakes
in data management and reporting. This source of uncertainty
was not addressed in this research because the uncertainty
results from equipment malfunction or personnel mistakes
and not from random statistical variation as affected by the
appropriate procedures. However, when project-specific
quantitative  estimates of uncertainty data processing and
management  are available, that information can be included
in the proposed error propagation methodology.

The subsequent discussion and analyses focus on uncer-
tainty related to streamflow measurement, sample collection,
sample preservation/storage, and laboratory analysis proce-
dures for measurement of streamflow, nitrogen (N), phospho-
rus (P), and total suspended sediment (TSS) data from small
watersheds. Although the categorization of various wa-
tershed scales is difficult because of the variability of
hydroclimatic  settings and the arbitrary selection of wa-
tershed outlet locations, the present research is generally
applicable for the field (<50 ha) and small watershed
(<10,000 ha) scale. For larger watersheds, streamflow
measurement and water quality sampling procedures must be
adjusted to adequately quantify discharge and transport
processes at that scale. It is important to note that the terms
“error” and “uncertainty” are synonymous throughout this
article and refer to random statistical variation, as affected by
the appropriate and accepted use of each specific instrument
or procedure, not equipment malfunction or personnel
mistakes.

STREAMFLOW MEASUREMENT
Streamflow (discharge) data are vital in most water

quality sampling programs. Constituent concentration data
must be coupled with streamflow data to evaluate transport
mechanisms and quantify mass loads. Measurement of
streamflow typically involves continuous stage (water depth)
measurement with a device such as a bubbler, pressure
transducer, float sensor (Buchanan and Somers, 1982), or
sonic sensor. These stage data are then converted to
streamflow rate with an established stage-discharge relation-
ship based on the surveyed cross-sectional channel geometry
(Buchanan and Somers, 1976; Brakensiek et al., 1979;
Kennedy, 1984; Carter and Davidian, 1989). Although
information on the uncertainty associated with individual
steps in streamflow measurement exists (e.g., Dickinson,
1967; Pelletier, 1988; Sauer and Meyer, 1992; Schmidt,
2002), such data are seldom used to assess the overall
uncertainty in resulting streamflow data.

Stage-discharge relationships are either established by a
series of direct streamflow measurements at a range of stages
or accompany a pre-calibrated flow control structure. Direct
streamflow measurements are conducted by measuring flow
depth and velocity at many locations in the stream cross-sec-
tion. Typically, flow depth and velocity are measured in
vertical cross-section segments, each with no more than 5%
to 10% of total flow. Pelletier (1988) and Sauer and Meyer
(1992) conducted thorough reviews of errors associated with

direct streamflow measurement. A brief summary of their
findings appears subsequently. Accurate depth measurement
with a measuring rod or a sounding weight can be difficult,
especially with rapid changes in stage and for channel beds
composed of cobbles or covered by soft sediment. In contrast,
the error associated with segment width determination is
usually negligible. Measurement of flow velocity can also
introduce substantial uncertainty. Commercially available
current meters typically have a precision rating provided by
the manufacturer. The uncertainty introduced by pulsation
and turbulence can be largely overcome by taking mean
measurements of velocity over time, but this increases the
time required for an accurate measurement. The error
associated with velocity variability within each vertical
section can be decreased by taking the mean of two or more
measurements (e.g., at 0.2 and 0.8 of flow depth), as opposed
to simply making the common assumption that the mean
velocity occurs at 0.6 of flow depth (Carter and Anderson,
1963). Error associated with flow oblique to the cross-section
can be reduced with measurement adjustment in the field
using established correction factors. Two methods common-
ly used in the computation of discharge within each vertical
segment are the mid-section method and the mean section
method (Rantz et al., 1982b), but the mid-section method has
been shown to be more accurate (Young, 1950; Hipolito and
Leoureiro, 1988).

In natural channels, a stage-discharge relationship is
typically established from a series of direct streamflow
measurements (Kennedy, 1984; Carter and Davidian, 1989),
as described previously. The major source of uncertainty in
measured streamflow for natural channels is change in
channel dimensions, which can be caused by bed scour/depo-
sition, bank erosion, vegetation changes, and debris deposi-
tion. Thus, frequent streamflow measurement and
stage-discharge relationship adjustment is required to mini-
mize the uncertainty in measured streamflow data from
unstable channels. If this is neglected, the uncertainty can
increase substantially. If Manning’s equation is used instead
of direct streamflow measurements to estimate the stage-dis-
charge relationship, the uncertainty will increase substantial-
ly. Thus, the Manning’s equation alternative should be
avoided if possible.

In sites with a flow control structure, such as a weir or
flume, the structure typically has an associated stage-dis-
charge relationship. If the structure is not pre-calibrated with
a known stage-discharge relationship, the direct streamflow
measurement procedure discussed previously can be used to
establish the relationship. Flow control structures are de-
signed to produce accurate streamflow measurement by
providing a unique and consistent relation between stage and
flow rate and a constant cross-sectional area. However,
improper structure installation resulting in incomplete flow
capture (i.e., lateral or hyporheic bypass), unlevel structure
alignment,  or inappropriate approach channel characteristics
can introduce considerable uncertainty (Rantz et al., 1982a).
Stage measurement can also introduce uncertainty in mea-
sured streamflow. Stage sensor manufacturers provide typi-
cal precision estimates, but further error may arise if
instrument readings are not adequately calibrated and if the
sensor is not placed in a stilling well. Whether structures are
pre-calibrated  or not, their stage-discharge relationship
should be confirmed periodically, at least annually, with
direct streamflow measurement.
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SAMPLE COLLECTION
In small watersheds, both baseflow and storm sampling

may be needed to adequately characterize water quality. To
adequately characterize conditions at intermittent or ephem-
eral sites, manual grab samples of baseflow should be taken
periodically at regular time intervals not less than once per
month. At that scale, samples can be taken at a single point
in the flow, generally in the centroid of flow, because
dissolved constituent concentrations typically are assumed to
be uniform across the cross-section (Martin et al., 1992;
Ging, 1999).

For storm sampling, two techniques are commonly used.
The USGS Equal-Width-Increment (EWI) and Equal-Dis-
charge-Increment (EDI) procedures are well-accepted and
widely used for storm water sampling (USGS, 1999). These
manual procedures take multiple depth-integrated, flow-pro-
portional samples across the stream cross-section and
produce accurate measurements of dissolved and particulate
concentrations.  Less intensive manual sampling, such as
point sampling at random times and/or locations during
runoff events, can introduce substantial uncertainty because
they do not capture the spatial and temporal variability in
constituent concentrations. In recent years, automated sam-
plers with a single intake have been increasingly utilized to
collect storm water quality samples. Automated samplers are
able to use a consistent sampling procedure at multiple sites,
to take multiple samples throughout the entire duration of
runoff, and to sample within the quick hydrologic response
time of small watersheds (Harmel et al., 2003).

Recent field research has been conducted recently on the
relative differences between various water quality sampling
strategies. Izuno et al. (1998) compared paired time- and
flow-based automated sampling strategies on ten sites less
than 1865 ha over three years and concluded that no
differences existed between flow-based sampling and time-
based sampling at intervals from 60 to 180 min. On a 2050 ha
site in North Carolina, Stone et al. (2000) conducted a
multi-year comparison of four sampling techniques utilizing
time- and flow-based automated sampling and manual grab
sampling. The sampling techniques created significant
differences in the number of samples collected and in
calculated N loads. Robertson and Roerish (1999) used
intensive sampling to represent true annual loads from eight
1400 to 11,000 ha watersheds in an evaluation of the
regression approach, which is commonly used when only
limited samples can be collected. For 1-year studies, the
authors recommended monthly sampling with storm chasing
(traveling to sites to sample during runoff events) because of
high precision in spite of 25% to 50% overestimation. For 2-
to 3-year studies, the authors concluded that fixed-period
semi-monthly sampling alone was adequate to provide
precise and accurate load estimation.

A limitation of previous field studies is that they typically
compare various estimates of constituent loads and thus
evaluate relative differences (precision) in error without
regard to possible deviation from the true load (accuracy). It
is not possible to compare the accuracy of various sampling
strategies without a known (or assumed) true value. As a
result, relative comparisons are available, but little is known
about the uncertainty of each. The impracticality of collect-
ing all runoff, even from very small areas, for concentration
measurement has been realized for some time (Parsons,
1954), and all the alternatives require considerable cost and

commitment  to make true load measurements. On small
watersheds, the practical alternatives involve automated
collection of a volumetric portion of the total runoff (e.g.,
Parsons, 1954; Edwards et al., 1976; Sheridan et al., 1996;
Franklin et al., 2001; Bonta, 2002) or frequent subsamples
based on small time or flow intervals (King and Harmel,
2004; Harmel and King, 2005).

In a recent study, Harmel and King (2005) addressed
uncertainty estimates in measured storm water quality data
from small agricultural watersheds with the assumption that
the true load was represented by frequent flow-interval
sampling, specifically 1.32 mm volumetric depth intervals.
Referring to discharge intervals in depth units (such as mm),
which represent mean runoff depth over the entire watershed,
as opposed to volume units (such as m3), normalizes
discharge over various watershed sizes. This notation allows
a consistent transfer of methods and results to watersheds of
differing sizes. All 15 of the flow-interval strategies evaluat-
ed by Harmel and King (2005), which include sampling
intervals of 1.32, 2.64, and 5.28 mm with discrete and
composite sampling of 2 to 5 samples per bottle, produced
cumulative load errors <10%. The authors concluded that
increasing the sampling interval (decreasing the frequency of
sample collection) introduced uncertainty but that increasing
the number of samples composited into one bottle had no
effect. Their analysis also yielded a significant positive
correlation between errors in storm load estimates and
within-event temporal variability of nutrient and sediment
concentrations.

To avoid the expense and time required to conduct field
analyses, several researchers have used analytic approaches
to explore uncertainty. Miller et al. (2000) and King and
Harmel (2003) developed mathematical relations for flow
rate and constituent concentrations to compare various time-
and flow-interval sampling strategies. The authors concluded
that increased sampling intervals result in increased uncer-
tainty and that flow-interval sampling produced less uncer-
tainty than corresponding time-interval strategies. Shih et al.
(1994) conducted a similar analysis and concluded that eight
time-based samples were generally necessary to achieve load
estimates with comparable accuracy of flow-based samples.

SAMPLE PRESERVATION/STORAGE
Sample preservation/storage techniques can also affect

the uncertainty of water quality data. Physical, chemical, and
biological processes can alter nutrient concentrations during
the interval between sample collection and analysis (Lambert
et al., 1992; Robards et al., 1994; Jarvie et al., 2002). The
increased use of automated samplers has increased the
potential for substantial alterations because of the time delay
between sample collection and retrieval. Numerous factors,
such as the container characteristics, storage environment,
chemical preservatives, and filtration methodology, all
influence these potential alterations.

Sample collection and storage containers can alter
measured nutrient concentrations. This effect is especially is
important for dissolved P, which has a high affinity for
adsorption onto container walls because of its relatively high
charge density (Jarvie et al., 2002). The degree of adsorption
depends on the container’s pre-treatment, composition, and
surface area to volume ratio and on the sample’s dissolved P
concentration and matrix chemistry. Only phosphate-free
detergents should be used to clean collection and storage
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containers (Haygarth and Edwards, 2000). Rinsing plastic
bottles with dilute acetic or hydrochloric acid (HCl) reduces
adsorption by saturating sorption sites, but the opposite is the
case for glass bottles (Ryden et al., 1972). Pre-treatment of
glass bottles with hydrofluoric acid has been shown to reduce
P sorption, but health and safety issues concerning hydro-
fluoric acid and glass bottles often prevents their use (Jarvie
et al., 2002). Acid-washed, low-density polyethylene bottles
are generally the most suitable containers for the storage of
water samples, although polytetrafluoroethylene bottles
further minimize P sorption (Haygarth and Edwards, 2000).
The desorption of P from previously used containers can be
minimized by thorough pre-washing with dilute HCl and
rinsing with deionized water (Latterell et al., 1974). The
highest proportional losses of dissolved P occur from
low-concentration  samples, especially when stored in small
bottles with high surface area to volume ratios (Jarvie et al.,
2002; Haygarth et al., 1995; Kotlash and Chessman, 1998).
For high-concentration P samples, the absolute impact is
often insignificant because adsorption is limited by the
container ’s internal surface area (Kotlash and Chessman,
1998). Sample matrix chemistry also affects P sorption,
which is related primarily to anion exchange reactions. In
high ionic strength samples, the potential is greater for
competition between anions in solution for ion exchange
sites on the container walls, which leads to reduced P
adsorption (Jarvie et al., 2002). In contrast, greater P losses
have been observed for low ionic strength solutions (Maher
and Woo, 1998).

The storage environment can also influence nutrient
concentrations.  In all cases, the exclusion of light is
recommended to inhibit photosynthesis, and thus reduce
algal growth and nutrient uptake (Haygarth et al., 1995). The
effects of storage temperature and storage time have received
considerable attention in recent years. For polluted sites with
high nutrient concentrations, little proportional change in
nutrients has been observed for up to 6 days of storage
without any kind of temperature control (Kotlash and
Chessman, 1998). In contrast, up to 90% of ammoniacal N,
50% of oxidized N, 84% of total Kjeldahl N, and 67% of total
P may be lost from samples with low nutrient concentrations
after 6 h of storage without temperature control (Kotlash and
Chessman, 1998). Freezing of samples is impractical in the
field and is generally reserved for long-term laboratory
storage. It is often practical, however, to refrigerate samples
stored in automatic samplers, and this is the preferred method
of preservation in many cases. Low temperatures (<4.0°C)
reduce microbial activity, thereby reducing microbially
mediated nutrient transformations. The effectiveness of
refrigeration appears to vary, with some previous studies
demonstrating effective preservation for up to 8 days at 4.0°C
(Fishman et al., 1986) and others reporting significant
changes in nutrient concentrations within 4 to 48 h (Johnson
et al., 1975; Lambert et al., 1992; Haygarth et al., 1995).
Kotlash and Chessman (1998) reported effective preserva-
tion by refrigeration for up to 2 days for a broad range of sites
and nutrient concentrations under varying weather condi-
tions.

Chemical preservatives, such as chloroform, inorganic
acids, and mercuric chloride, can be used during storage to
stabilize nutrient concentrations by stopping metabolic
processes and preventing microbial uptake and release
(Kotlash and Chessman, 1998; Jarvie et al., 2002). The use

of chemical preservatives is, however, limited due to the
potential for contamination and colorimetric interference
(Haygarth et al., 1995; Maher and Woo, 1998). Preservatives
can be deployed in sample collection bottles before sam-
pling, although volatility can limit their longevity. Kotlash
and Chessman (1998) reported that acidification produced
results comparable to freezing for all N forms; however, the
application of chemical preservatives can be problematic.
Chloroform can result in the immediate release of dissolved
P from particles and algal cells (Fitzgerald and Faust, 1967)
and can interfere with colorimetric P determination (Skjems-
tad and Reeve, 1978). Inorganic acids and mercuric chloride
can hydrolyze organic compounds and release dissolved P
(Henriksen, 1969). Mercuric chloride can also precipitate
bacteria and proteins (Maher and Woo, 1998) and interfere
with colorimetric P determination (Skjemstad and Reeve,
1978).

Filtration, which is required for determination of dis-
solved nutrient species, can also influence measured con-
centrations (Jarvie et al., 2002). Filtration is commonly
conducted once samples have been returned to the laboratory,
despite recommendations of immediate field filtration for
dissolved P (Lambert et al., 1992; Haygarth et al., 1995;
Maher and Woo, 1998). In most cases, samples are passed
through 0.45 �m cellulose nitrate acetate filter paper under
vacuum pressure, but this can have undesirable effects. First,
the choice of a 0.45 �m cutoff is operationally defined; thus,
some fine particulate matter and colloidal material will pass
through into the filtrate (Lambert et al., 1992). Second,
membrane filter papers can yield significant P and N,
although this effect can be minimized by pre-washing filter
paper with deionized water (Robards et al., 1994). Third, the
mechanical  effects of filtering under vacuum pressure can
alter colloidal material, rupture cells, and release dissolved
nutrients (Jarvie et al., 2002). Fourth, reductions in effective
pore size by progressive blocking can occur during filtration,
which affects passage of fine sediment, colloidal material,
and associated nutrients (Jarvie et al., 2002).

LABORATORY ANALYSIS
The main potential sources of uncertainty in the laborato-

ry are associated with sample handling, chemical prepara-
tion, analytical method and equipment, personnel expertise,
and calibration standards and reference materials (CAEAL,
2003). Although these sources of error have received
substantial research attention, the need for quantification and
control of analytical error is commonly reported
(e.g., CAEAL, 2003; Jarvie et al., 2002; Gordon et al., 2000;
Mercurio et al., 2002; Ludtke et al., 2000). Personnel
expertise and proper methodology are vital in limiting errors
introduced by laboratory analysis. Meyer (2002) lists several
well-accepted  methods to reduce uncertainty that apply to
typical analyses. These include using adequate working
techniques and large volumes, minimizing the number of
steps, making sample and reference measurements in
temporal proximity and with the same instrument, introduc-
ing an internal standard, using a certified matrix standard,
and performing multiple analyses. Meyer (2002) also refers
to the results of Horwitz et al. (1980) to illustrate reduced
relative deviation in nutrient analysis compared to other
water quality constituents that occur in lower concentrations.

In sediment analysis, sediment is typically separated from
collected water samples by drying or filtering. Then, the
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concentration is determined from the sediment mass divided
by the original sample volume. Whereas only basic mass
measurements are necessary to determine sediment con-
centrations,  analysis of dissolved and particulate nutrient
concentrations requires more in-depth analytical procedures;
however, substantial errors can be introduced if proper
methods are not rigorously followed in either case. Total N
and P concentrations are determined by analyzing unfiltered
water samples, whereas dissolved N and P are measured in
the filtrate passing through a 0.45 �m filter. The most widely
accepted analytical techniques for determining nutrient
concentrations use wet chemistry followed by spectrophoto-
metric (colorimetric) analysis (Robards et al., 1994). These
techniques involve blending precise amounts of sample and
wet chemicals to cause a colorimetric reaction. The depth of
the color, measured with a spectrophotometer, is proportional
to the nutrient concentration. Total nutrient concentrations
are determined with the same technique except that particu-
late forms are initially converted into dissolved forms
through chemical digestion, which is strongly affected by
temperature,  pH, and particulate characteristics (Robards et
al., 1994). Inductively coupled plasma optical emission
spectrometry (ICP-OES) may also be used for the determina-
tion of total dissolved P if concentrations are relatively high,
but ICP mass spectrometry (ICP-MS) may offer better
accuracy for samples with lower P concentrations (Jarvie et
al., 2002).

OBJECTIVE

Faced with the need for scientifically defensible estimates
of data uncertainty to support water quality management, the
present research focused on nutrient and sediment loads
measured from small watersheds. The specific objectives
were to:

� Compile published information on uncertainty related
to measured streamflow and water quality data.

� Utilize a root mean square error propagation method to
compare the uncertainty introduced by each procedural
category for best and worst case and a range of typical
“data quality” scenarios.

� Utilize the error propagation method to calculate the
cumulative probable uncertainty in measured stream-
flow, sediment, and nutrient data for best and worst
case and a range of typical “data quality” scenarios.

METHODS
ERROR SOURCE DOCUMENTATION

To accomplish the objectives, results from selected
research on uncertainty related to streamflow and water
quality data were compiled from available literature and are
presented in tables 1 through 4; no new data on uncertainty
related to each procedure is presented. The information
included was selected based on its relevance to small
watersheds but is by no means meant to be comprehensive.
Only information on measurement of streamflow, dissolved
N and P, total N and P, and TSS is included. Dissolved N and
P include dissolved, colloidal, and other forms that typically
pass through a 0.45 �m filter. Total N and P include all these
forms associated with the water portion of the sample as well
as particulate forms.

ERROR PROPAGATION METHODOLOGY
The root mean square error propagation method of

Topping (1972), shown in equation 1, was used with reported
errors in tables 1 through 4 to estimate the cumulative
probable uncertainty for each procedural category (stream-
flow measurement, sample collection, sample preservation/
storage, and laboratory analysis) and for the overall resulting
streamflow and water quality data:

 ∑
=

++++=
n

i
nP EEEEE

1

22
3

2
2

2
1 )...(  (1)

where
EP = probable range in error (±%)
n = total number of sources of potential

error
E1, E2, E3, En = potential sources of error (±%).
This error propagation method was selected for two

reasons. First, it is a widely accepted method that has been
used for similar error calculations related to discharge
measurements (Sauer and Meyer, 1992) and water quality
constituents (Cuadros-Rodriquez et al., 2002). In addition, it
combines all of the potential errors to produce realistic
estimates of overall error. This method is valid for measured
water quality data because potential errors are typically
bi-directional  and, therefore, non-additive.

Various “data quality” scenarios were created for each
step in measuring water quality loads. Best case, typical, and
worst case scenarios were created by arbitrarily selecting
procedures from commonly utilized and accepted practices,
as identified in tables 1 through 4. The best case scenario
represents procedures used with a concentrated effort in
quality assurance/quality control (QA/QC) unconstrained by
financial and personnel resource limitations and in ideal
hydrologic conditions. The worst case represents projects
conducted with minimal attention to QA/QC, with limited
financial and personnel resources, and in difficult hydrologic
conditions. To formulate the best and worst case scenarios, it
was assumed either that poor conditions with little QA/QC
occurred together to generate large errors or that ideal
conditions occurred together with careful QA/QC to mini-
mize errors. Thus, extreme low “best case” or extreme high
“worst case” error estimates resulted. The typical scenario
represents procedures conducted with a moderate effort at
QA/QC and under typical hydrologic conditions. Within the
typical scenario, a range of conditions was determined with
average values and maximum and minimum uncertainty
boundaries to represent a more reasonable “typical” range of
uncertainty.

Classification of individual steps into these data quality
scenarios (best case, typical, and worst case) was based on
professional experience and judgment. The reader is encour-
aged to apply uncertainty estimates that correspond to
specific data sets, if that information is available. In the
absence of data set specific uncertainty estimates, the present
results can be used to establish reasonable estimates for
uncertainty introduced by streamflow measurement, sample
collection,  sample preservation/storage, and laboratory anal-
ysis and for resulting streamflow and water quality data.

The uncertainty, represented by the probable error range
(Ep), associated with measured water quality data was
compared for each procedural category (streamflow mea-
surement, sample collection, sample preservation/storage,
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and laboratory analysis). The error introduced by each step
within each procedural category was determined from pub-
lished information identified in tables 1 through 4. The infor-
mation included in table 1 is divided into four procedural
steps (or sources of uncertainty) involved in streamflow mea-
surement. These include individual streamflow measure-
ments to establish the stage-discharge relationship, applica−
tion of the stage-discharge relationship, continuous stage
measurement,  and the effect of streambed condition on stage
measurement.  Thus, when determining the cumulative un-
certainty for the streamflow measurement procedural catego-
ry, four components, one for each step in table 1, were
included in equation 1. The information in table 2 is divided
into two methods of sample collection, which are both af-
fected by the minimum flow threshold at which to initiate
sample collection. The uncertainty in automated sample
collection is related to use of a single sampling intake and the
choice of flow- or time-interval sampling. The uncertainty in
manual sample collection is related to the choice of inte-
grated or grab sampling. Thus, the uncertainty calculation for
sample collection involved applying equation 1 with two un-
certainty components (collection method and minimum flow
threshold). The overall uncertainty resulting from sample
preservation/storage  procedures and from laboratory analy-
sis is presented for each constituent in tables 3 and 4. The cal-
culation of uncertainty contributed by sample
preservation/storage  involved only one component in equa-
tion 1. In contrast, the uncertainty contributed by laboratory

analysis included the cumulative effects of each relevant
analysis. For example, determination of TSS and dissolved
N and P involved only the analysis of constituent concentra-
tion (thus one component in eq. 1), but determination of par-
ticulate N and P involved analysis of sediment concentration
and analysis of sediment nutrient content (thus two compo-
nents in eq. 1).

The uncertainty estimates for each step (or source of
uncertainty) were entered into the root mean square error
propagation method (Topping, 1972) to determine the
cumulative probable uncertainty within each procedural
category. Errors for each category were then propagated with
the same method to determine the cumulative probable
uncertainty for the resulting streamflow and water quality
data.

RESULTS AND DISCUSSION
COMPILATION OF PREVIOUS RESEARCH

Results of selected research pertaining to collection of
streamflow and selected water quality constituent data are
summarized in tables 1 through 4. The information presented
was selected to support the present error propagation
analyses and to aid in future analyses. These tables are not
meant to be comprehensive but to provide readily accessible
estimates of uncertainty related to streamflow measurement,
sample collection, sample preservation/storage, and labora−
tory analysis pertinent to measured water quality data, spe−

Table 1. Uncertainty in streamflow measurement.
Uncertainty[a] Reference

Individual Streamflow Measurements
Velocity-area (direct discharge) method

Ideal conditions ±2% Sauer and Meyer (1992)
Ideal conditions (0.2, 0.8d velocity) ±6.1% Pelletier (1988)
Ideal conditions (0.6d velocity) ±8.5% Pelletier (1988)
Average conditions ±6% Sauer and Meyer (1992)
Poor conditions ±20% Sauer and Meyer (1992)
Ideal conditions ±2% Boning (1992)

Manning’s equation method
Stable, uniform channel; surveyed reach and cross-section; accurate “n” estimate ±15% Slade (2004)
Unstable, irregular channel; surveyed reach and cross-section; poor “n” estimate ±35% Slade (2004)

Stage-Discharge Relationship
Pre-calibrated flow control structure (properly designed and installed) 

with periodic current meter checks ±5% to 8% Slade (2004)
Pre-calibrated flow control structure (properly designed and installed) ±5% to 10% Slade (2004)
Stable channel with stable control, 8-12 stage-discharge measurements per year ±10% Slade (2004)
Shifting channel, 8-12 stage-discharge measurements per year ±20% Slade (2004)
Natural channel, ideal conditions ±6% Boning (1992)

Continuous Stage Measurement
Float recorder ±2% Cooper (2005), unpubl. data
Float recorder ±3 mm (±0.00985 ft)[b] Herschy (1975)
KPSI series 173 pressure transducer ±0.1%, ±0.022% thermal error KPSI (2005)
Campbell Scientific SR50-L ultrasonic distance sensor Larger of ±1 cm or 0.4% of 

distance to water surface
Campbell Scientific (2003)

ISCO 730 bubbler flow module ±0.035 ft ±0.0003 * (ft) * 
temp. change from 72°F[c]

Teledyne ISCO (2005)

Effect of Streambed Condition on Stage Measurement
Stable, firm bed ±0% Sauer and Meyer (1992)
Mobile, unstable bed ±10% Sauer and Meyer (1992)

[a]   Error estimates are presented as their ±% range for bi-directional error or as their actual % range.
[b]   At 10 ft = 0.1%, at 1 ft = 1.0%, at 0.1 ft = 10%, and at 0.01 ft = 100%.
[c]   At 72°F and 10 ft = 0.0%, at 1 ft = 0.4%, at 0.1 ft = 3.5%, and at 0.01 ft = 35%.
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Table 2. Uncertainty in sample collection.
Uncertainty[a] Reference

Sample Collection Method
Manual sampling

Integrated sampling (EWI or EDI)
Frequently during each storm ±5% dissolved; 15% suspended Slade (2004)
Only once in each storm ±15% dissolved; 30% suspended Slade (2004)

Grab sampling (single point, random time) ±25% dissolved; >50% suspended Slade (2004)
Automated sampling

Effect of single sampling point (sample intake)
Dissolved N (NH3, NO3, NO2, NO2+NO3 forms) Range of medians 0% to 4% (overall median = 0%) Martin et al. (1992)
Total N Range of medians 0% to 0% (overall median = 0%) Martin et al. (1992)
Dissolved P (PO4) Range of medians 0% to 0% (overall median = 0%) Martin et al. (1992)
Total P Range of medians 0% to 17% (overall median = 0%) Martin et al. (1992)
TSS Range of medians 14% to 33% (overall median = 20%) Martin et al. (1992)

Flow-interval sampling strategies: f(flow interval)
2.5-15 mm, with up to 6 composite samples −6% to +17% King and Harmel (2003)
1.32-5.28 mm, with up to 5 composite samples −9% to +3% Harmel and King (2005)
0.2-1.25 mm ±0% to 22% Miller et al. (2000)

Time-interval sampling strategies: f(time, number of composite samples)
5 min, discrete ±0% to 11% Miller et al. (2000)
5 min, discrete 0% King and Harmel (2003)
5 min, with up to six composite samples −5% to 4% King and Harmel (2003)
30 min, discrete ±3% to 42% Miller et al. (2000)
30 min, discrete −2% to 2% King and Harmel (2003)
30 min, with up to six composite samples −32% to 25% King and Harmel (2003)
120 min, discrete −15% to 13% King and Harmel (2003)
120 min, with up to six composite samples −65% to 51% King and Harmel (2003)

Minimum Flow Threshold
Disregard flow and concentration outside 

sampling period, “low” threshold
±1% to 5% (median = 3%) Professional judgment based

on Harmel et al. (2002)
Disregard flow and concentration outside 

sampling period, “high” threshold
±9% to 81% (median = 35%) Professional judgment based

on Harmel et al. (2002)
Extrapolate flow and concentration outside 

sampling period, “low” threshold
±2% Professional judgment based

on Harmel et al. (2002)
Extrapolate flow and concentration outside 

sampling period, “high” threshold
±20% Professional judgment based

on Harmel et al. (2002)
[a]   Error estimates are presented as their ±% range for bi-directional error or as their actual % range.

Table 3. Uncertainty in sample preservation/storage.

Preservation/Storage Technique Uncertainty[a] Reference

NH3-N Iced, analyzed within 6 h −50% to 1% (median = −18%) Kotlash and Chessman (1998)
Acidified to ph <2, analyzed within 6 h −58% to 4% (median = −8%) Kotlash and Chessman (1998)
Refrigerated, analyzed within 54 h −79% to 83% (median = −16%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 192 h −90% to 67% (median = −38%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 96 h ±5% to 77% (median = 3%) Cooper (2005), unpublished data

NO3-N Iced, analyzed within 6 h ±0% (median = 0%) Kotlash and Chessman (1998)
Acidified to ph <2, analyzed within 6 h −6% to 20% (median = −1%) Kotlash and Chessman (1998)
Refrigerated, analyzed within 54 h −47% to 14% (median = −2%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 192 h −65% to 71% (median = −2%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 96 h ±7% to 30% (median = 1%) Cooper (2005), unpublished data

TKN Iced, analyzed within 6 h −14% to 22% (median = 3%) Kotlash and Chessman (1998)
Acidified to ph <2, analyzed within 6 h −16% to 49% (median = −1%) Kotlash and Chessman (1998)
Refrigerated, analyzed within 54 h −28% to 32% (median = −9%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 192 h −84% to 20% (median = −26%) Kotlash and Chessman (1998)

Total P Iced, analyzed within 6 h −13% to 69% (median = −7%) Kotlash and Chessman (1998)
Refrigerated, analyzed within 54 h −7% to 92% (median = 7%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 192 h −64% to 9% (median = −11%) Kotlash and Chessman (1998)

Filterable P[b] Iced, analyzed within 6 h −47% to 267% (median = −7%) Kotlash and Chessman (1998)
Refrigerated, analyzed within 54 h −52% to 600% (median = 8%) Kotlash and Chessman (1998)
Unpreserved, analyzed within 192 h −39% to 20% (median = −17%) Kotlash and Chessman (1998)

[a]   Error estimates are presented as their ±% range for bi-directional error or as their actual % range.
[b]   Dissolved P, passed through a 0.45 µm filter membrane.
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Table 4. Uncertainty in laboratory analysis.
Sample Analysis Uncertainty[a] Reference

TSS
Sandy sediment 95% CI range = −9.8% to 5.1%, 

range of medians = −4.9% to −2.5%
Gordon et al. (2000)

Fine sediment 95% CI range = −5.3% to 4.4%, 
range of medians = −1.3% to −0.4%

Gordon et al. (2000)

Dissolved (Solution) N, P
Total P (ICP) Range of medians = ±4% to 210% Miller and Kotuby-Amacher (2005), unpublished data
Total P (alkaline persulfate digestion) Range = −24% to 22% (avg. = 2%) Mercurio et al. (2002)
Total P (micro-Kjeldahl) Range of medians = −1% to 3% Ludtke et al. (2000)
PO4-P spec. Range of medians = ±5% to 400% Miller and Kotuby-Amacher (2005), unpublished data
PO4-P (colorimetric) Range of medians = −5% to 9% Ludtke et al. (2000)
PO4-P (colorimetric) Range = −14% to 22% (avg. = 8%) Mercurio et al. (2002)
TKN Range of medians = ±11% to 82% Miller and Kotuby-Amacher (2005), unpublished data
Total N (alkaline persulfate digestion) Range = −20% to 20% (avg. = −3%) Mercurio et al. (2002)
NO3-N Range of medians = ±7% to 400% Miller and Kotuby-Amacher (2005), unpublished data
NO3-N (colorimetric) Range −4% to 9% (avg. = 7%) Mercurio et al. (2002)
NO3+NO2-N (colorimetric) Range of medians = −6% to 3% Ludtke et al. (2000)
NH4-N Range of medians = ±15% to 200% Miller and Kotuby-Amacher (2005), unpublished data
NH4-N (colorimetric) Range −22% to 26% (avg. = −8%) Mercurio et al. (2002)
NH4-N (colorimetric) Range of medians = −7% to 12% Ludtke et al. (2000)

Particulate N, P
TKN Range of medians = ±6% to 15% Miller and Kotuby-Amacher (2005), unpublished data
Total N (combustion) Range of medians = ±4% to 30% Miller and Kotuby-Amacher (2005), unpublished data
Total N (combustion) Range −1% to 12% (avg. = 2%) Mercurio et al. (2002)
Total P (HCl digestion) Range −2% to 16% (avg. = 7%) Mercurio et al. (2002)

Whole Water Sample
TKN (micro-Kjeldahl) Range of medians = −24% to 0% Ludtke et al. (2000)
TKP (micro-Kjeldahl) Range of medians = 0% to 4% Ludtke et al. (2000)

[a]   Error estimates are presented as their ±% range for bi-directional error or as their actual % range.

cifically streamflow and N, P, and TSS loads. Each entry con-
tains a specific procedure or potential source of error, the as-
sociated uncertainty, and an appropriate reference. A
majority of the error estimates are presented as a ±% range,
which reflects their bi-directional nature, but others are pre-
sented as the % range of error values. Regardless of the nota-
tion, all potential error sources were assumed to be
bi-directional  in error propagation calculations.

ERRORS FOR EACH PROCEDURAL CATEGORY
Error propagation (cumulative probable uncertainty)

results contributed by each procedural category are presented
in figure 1 and discussed for worst case, typical, and best case
scenarios. These results are pertinent to storm load (mass)
determination  and are based on the assumptions made to
create the various data quality scenarios. Storm load
determination  requires all four procedural categories; thus,
uncertainty contributed by streamflow measurement, sample
collection, sample preservation/storage, and laboratory anal-
ysis are analyzed.

Streamflow Measurement
The cumulative probable uncertainty results presented for

streamflow measurement were determined by propagation of
uncertainty introduced by individual streamflow measure-
ments to establish the stage-discharge relationship, applica-
tion of the stage-discharge relationship, continuous stage
measurements,  and the effect of streambed condition on stage
measurement (table 1). The probable error range (EP, ±%)
for measured streamflow was estimated to be 42% for the
worst case scenario. The worst case scenario involved

streamflow estimation with Manning’s equation with a
stage-discharge relationship for an unstable, mobile bed and
a shifting channel. For the typical scenario, the EP ranged
from 6% to 19% for a range of individual streamflow
measurement techniques, channel types, and channel condi-
tions (fig. 1). The estimated EP was 3% for the best case
scenario, which included flow measurement under ideal
hydrologic conditions, specifically a pre-calibrated flow
control structure (stable bed and channel) and a stilling well
for stage measurement.

Sample Collection
The cumulative probable uncertainty results presented for

sample collection were determined by propagation of
uncertainty introduced by individual steps within two sample
collection methods and by the minimum flow threshold at
which to initiate sample collection (table 2). The uncertainty
in automated sample collection is related to use of a single
sampling intake and the choice of flow- or time-interval
sampling. The uncertainty in manual sample collection is
related to the choice of integrated or grab sampling. In terms
of uncertainty introduced by sample collection, the estimated
EP was 104% for dissolved constituents and 109% for TSS
and total N and P in a worst case scenario. This scenario
involved liberal estimates of error associated with sample
collection at a single point, infrequent time-interval sampling
at a high minimum flow threshold, and disregard of
conditions outside the sampling period. Under a range of
typical scenarios, which included moderate errors associated
with frequent flow- or time-interval sample collection at a
single point and estimation of conditions outside a high flow
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threshold, the EP ranged from 4% to 47% for dissolved
constituents and from 4% to 50% for TSS and total N and P
(fig. 1). Under the best case scenario, which included
conservative error estimates associated with frequent flow-
or time-interval sample collection at a single point and
estimation of conditions outside a low flow threshold, EP was
1% for dissolved and sediment-associated constituents.

Sample Preservation/Storage and Laboratory Analysis
Error propagation was unnecessary for sample preserva-

tion/storage because combined errors (not errors for individ-
ual steps) in this procedural category were reported for
individual constituents (table 3). In terms of uncertainty
introduced by sample storage/preservation, estimated EP
values ranged from 20% to 90% for dissolved constituents
and from 9% to 84% for total nutrients in a worst case
scenario. The worst case scenario involved unpreserved,
unrefrigerated sample storage for 144 h and then refrigerated
storage for 48 h prior to analysis. Under a typical scenario,
which involved refrigerated sample storage for 54 h prior to
analysis, EP estimates ranged from 2% to 16% for dissolved
nutrients and from 7% to 9% for total nutrients (fig. 1). Under
a best case scenario, which included iced sample storage for
6 h prior to analysis, EP ranged from 0% to 2% and from 1%
to 3% for dissolved and total nutrients, respectively. The
concentration of TSS was not affected by preservation and
storage procedures.

Although the overall uncertainty related to laboratory
analysis is presented for each constituent in table 4, the
uncertainty in sediment, dissolved N and P, and particulate N
and P is included, where appropriate, in the determination of
constituent concentrations. In terms of uncertainty
introduced by laboratory analysis, estimated EP values were
200% to 400% for dissolved constituents, 88% to 211% for
total nutrients, and 10% for TSS in a worst case scenario. The
worst case scenario involved liberal estimates of error for
constituents present in very low concentrations. For a range
of typical scenarios with moderate error estimates for low
constituent concentrations, estimated EP values ranged from
4% to 26% for dissolved nutrients, from 3% to 32% for total

nutrients, and from 1% to 5% for TSS (fig. 1). The best case
scenario with conservative error estimates for constituents
present in moderate concentrations resulted in EP estimates
of less than 2%, 4%, 1%, respectively, for dissolved nutrients,
total nutrients, and TSS.

COMPARISON OF PROCEDURAL CATEGORIES

Although sample preservation/storage and laboratory
analysis are typically emphasized in QA/QC efforts, the
scientific validity for this emphasis over other sources of
error has not been established. Results of the present research
indicate that substantial error can be introduced by each of
the procedural categories (fig. 1). In the worst case scenario,
sample collection and laboratory analysis can contribute
more uncertainty than streamflow measurement and sample
preservation/storage.  The potentially large uncertainty
introduced by sample analysis is influenced by inflated
relative errors for low-magnitude known values, e.g., very
low constituent concentrations. Kotlash and Chessman
(1998) noted this influence on nutrient concentrations in
unpolluted streams, which are very sensitive to small
absolute errors and result in high relative errors. In the range
of typical scenarios, sample collection had the greatest
potential to contribute large amounts of uncertainty because
of the cumulative effects of substantial potential error
associated with a single sampler intake, automated sampler
operation, and the minimum flow threshold (table 1). In the
best case scenario, the uncertainty was less than 5% for each
procedural category.

These findings indicate that changes in current QA/QC
methodology are needed. Although sample preservation/
storage and laboratory analysis are typically emphasized, the
uncertainty introduced by streamflow measurement and
sample collection should not be ignored in QA/QC plans
aimed at reducing uncertainty in measured water quality
data. In fact, sample collection has the potential to introduce
the most uncertainty under typical scenarios with moderate
QA/QC effort and average hydrologic conditions (fig. 1).
Based on field experience, Martin et al. (1992) made a similar

Figure 1. Comparison of probable uncertainty contributed by each procedural category for best case, typical, and worst case “data quality” scenarios;
data presented were averaged across constituent type.
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Figure 2. Cumulative probable uncertainty, represented by the probable error range (EP), for streamflow and nutrient and sediment storm loads for
worst and best case scenarios and a range of typical scenarios.

observation that sample collection can be the largest source
of uncertainty in measured water quality. The authors also
recognized the relative lack of discussion on sample collec-
tion methodology in publications that address standard meth-
ods for evaluating water quality.

UNCERTAINTY IN RESULTING STREAMFLOW AND WATER
QUALITY DATA

The uncertainty in each step of the procedural categories
was propagated with the Topping (1972) method in equa-
tion 1 to estimate the cumulative probable uncertainty in the
resulting water quality data (table 5, fig. 2). These results
indicate that streamflow data are much more reliable than
nutrient and sediment load data. Estimated EP values ranged
from 8% to 104% for dissolved nutrients, from 8% to 110%
for total nutrients, and from 7% to 53% for TSS under typical
conditions and ranged from 117% to 421% in the worst case
scenario. Estimated EP values for streamflow were substan-
tially lower, ranging from 6% to 19% under typical
conditions and reaching only 42% in the worst case scenario.
The reduced error for streamflow was expected because
determination  of constituent loads involves additional proce-
dural steps and potential sources of error. Errors in TSS loads
were typically less than errors in nutrient loads because
sediment mass is not subject to post-collection transforma-
tion. In typical scenarios, uncertainty in NO3-N data was less
than that in NH4-N and dissolved P data because NO3-N often
occurs in higher concentrations; however, all dissolved
constituent data can be quite uncertain in the worst case

scenario (fig. 2) due to the difficulty of accurately measuring
very low concentrations.

The cumulative probable uncertainty results presented
thus far apply to measured storm loads, which require
streamflow measurement, sample collection, sample pres-
ervation/storage,  and laboratory analysis. However, stream-
flow measurement is unnecessary when storm water quality
concentration data, not load data, are required. Thus, the
cumulative probable uncertainty in measured constituent
concentrations in stormflow is reduced due to the elimination
of streamflow uncertainty. When uncertainty contributed by
streamflow measurement was eliminated, reductions in EP
ranged from 2% to 8% in the worst case scenario, from 2%
to 3% in typical scenarios, and from 1% to 2% in the best case
scenario, compared to storm load uncertainty. These small
reductions in uncertainty for measured constituent con-
centrations in stormflow are attributed to the finding that
streamflow measurement typically contributes less uncer-
tainty than the other procedural categories (fig. 1).

Determination of constituent concentrations at baseflow
involves even less uncertainty because errors associated with
storm sampling are eliminated. In contrast to the relatively
low reduction in errors for stormflow concentrations, the
error reductions associated with baseflow sampling were
substantial because storm sample collection can introduce
substantial uncertainty in measured data. For baseflow
constituent concentrations, reductions in EP ranged from
15% to 83% in the worst case scenario, from 3% to 35% in
typical scenarios, and from 1% to 3% in the best case
scenario, compared to storm load uncertainty.

Table 5. Cumulative probable uncertainty, represented by the probable error range (EP), for streamflow
and nutrient and sediment storm loads for worst case, best case, and typical scenarios.

Streamflow (%) NO3-N (%) NH4-N (%) Total N (%) Diss. P (%) Total P (%) TSS (%)

Worst case scenario 42 421 246 168 417 249 117
Typical scenario maximum 19 69 100 70 104 110 53
Typical scenario average 10 17 31 29 23 30 18
Typical scenario minimum 6 8 11 11 11 8 7
Best case scenario 3 4 3 6 4 3 3
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IMPLICATIONS FOR WATERSHED AND WATER QUALITY
MODELING

The uncertainty inherent in data used to calibrate and
evaluate watershed and water quality model output is
commonly acknowledged but seldom considered in model-
ing analyses because such estimates of uncertainty were
previously unavailable. With the methodology presented,
modelers can now quantify the “quality” of their calibration
and evaluation data sets and realistically judge model
performance.  Models should be expected to produce output
within the uncertainty limits inherent in measured data, not
to produce outputs with low deviation from measured data.
If models are judged solely on their ability to produce values
similar to measured data, then the model in a sense may be
precise but may not be accurately reproducing actual
hydrological and water quality conditions.

Based on the present results regarding various “data
quality” scenarios, model results within 10% to 31% of
measured values are within the average uncertainty range of
water quality data measured with a typical QA/QC effort.
However, where high quality calibration and evaluation data
(collected in good hydrologic conditions with dedicated
QA/QC) are available, model performance can be held to a
higher standard, (such as ±10%). In the opposite case, when
model calibration and evaluation data are collected in a worst
case scenario with difficult hydrologic conditions and little
effort at minimizing uncertainty, the uncertainty values can
exceed 40% for streamflow, 100% for TSS, and 150% to
400% for nutrients. Such data sets may offer little advantage
over absence of available data for model evaluation, and it
can be argued that uncalibrated model application is
appropriate.

The results of the present research clearly demonstrate the
benefits of uncertainty estimates associated with model
calibration and evaluation data; however, another important
issue remains. How should uncertainty estimates for mea-
sured data be combined with model uncertainty to determine
overall probable error values for projects, such as TMDLs, in
which calibrated watershed models are used to allocate
loads? Only when this question is satisfactorily answered can
arbitrary margins of safety be replaced with rigorous,
scientifically defensible, potentially more cost-effective
uncertainty estimation and risk assessment.

A similar approach to that utilized in the present study,
i.e., cumulative probable combination of overall errors
inherent in measured data with uncertainty in modeling
procedures, is one option to achieve this enhancement.
Model uncertainty associated with factors such as model
parameterization,  process representation, and equifinality
can be quantified with sensitivity analyses using techniques
such as generalized likelihood uncertainty analysis (Beven
and Binley, 1992). A discussion of how such techniques
could be coupled with quantitative error estimates for
measured data is beyond the scope of this article. It is clear,
however, that consideration of both measured data and model
uncertainty remains a major challenge in watershed model-
ing projects with regulatory, legal, or policy implications.

SUMMARY AND CONCLUSIONS
Several noteworthy findings and recommendations re-

sulted from the present analysis of uncertainty in measured

streamflow and water quality data. These results are applica-
ble at the field and small watershed scale but must be adjusted
for application at the large watershed and river basin scale.

� Selected information from previous research related to
uncertainty in measured streamflow and water quality
data was presented in tables 1 through 4 to support the
present analysis and subsequent analyses. However, in
subsequent error propagation analyses, this informa-
tion should be supplemented with available project-
specific uncertainty data.

� Although sample preservation/storage and laboratory
analysis are typically emphasized in current QA/QC ef-
forts, the present research indicated that substantial er-
ror can be introduced by each procedural category.
Thus, changes in QA/QC methodology are needed to
appropriately consider potential uncertainty in stream-
flow measurement and sample collection, especially
since storm sample collection has the potential to
introduce the most uncertainty in typical scenarios.

� Based on the assumptions made to create a range of typ-
ical “data quality” scenarios, the cumulative probable
uncertainty for measured storm loads ranged from 8%
to 69% for NO3-N, from 11% to 100% for NH4-N, from
11% to 70% for total N, from 11% to 104% for dis-
solved P, from 8% to 110% for total P, and from 7% to
53% for TSS. However, the uncertainty can increase
substantially for poor measurement conditions and
limited quality control effort.

� The cumulative probable uncertainty for measured
storm water quality concentrations, which does not in-
clude uncertainty in streamflow measurement, was re-
duced only slightly compared to storm load data
because streamflow measurement typically contrib-
utes less uncertainty than the other procedures. Howev-
er, for measured baseflow constituent concentrations,
which do not require streamflow measurement or storm
water sample collection, reductions in EP ranged from
15% to 83% in the worst case scenario, from 3% to 35%
in typical scenarios, and from 1% to 3% in the best case
scenario.

� In the absence of site- or project-specific uncertainty
data, the estimates presented can be used to establish
reasonable initial uncertainty values for small wa-
tershed streamflow and water quality data. However, if
site- or project-specific data are available for the proce-
dural categories, that data should be incorporated into
the proposed error propagation methodology to better
estimate actual uncertainty.

With the results and methodology presented, the water
resource community can better assess the uncertainty or
“quality” of available data sets for use in water quality
management.  The information should be especially useful to
water quality modelers, thus allowing them to make realistic,
science-based evaluations of model performance based on
the uncertainty present in calibration and evaluation data
sets. Policy, regulatory, research, and legal interests will, as
a result, have a quantified confidence in model output;
therefore, they will be better informed to make appropriate
decisions based on model results.
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