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MODEL EVALUATION GUIDELINES FOR SYSTEMATIC

QUANTIFICATION OF ACCURACY IN WATERSHED SIMULATIONS

D. N. Moriasi,  J. G. Arnold,  M. W. Van Liew,  R. L. Bingner,  R. D. Harmel,  T. L. Veith

ABSTRACT. Watershed models are powerful tools for simulating the effect of watershed processes and management on soil and
water resources. However, no comprehensive guidance is available to facilitate model evaluation in terms of the accuracy
of simulated data compared to measured flow and constituent values. Thus, the objectives of this research were to:
(1) determine recommended model evaluation techniques (statistical and graphical), (2) review reported ranges of values and
corresponding performance ratings for the recommended statistics, and (3) establish guidelines for model evaluation based
on the review results and project-specific considerations; all of these objectives focus on simulation of streamflow and
transport of sediment and nutrients. These objectives were achieved with a thorough review of relevant literature on model
application and recommended model evaluation methods. Based on this analysis, we recommend that three quantitative
statistics, Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of the root mean square error to the standard
deviation of measured data (RSR), in addition to the graphical techniques, be used in model evaluation. The following model
evaluation performance ratings were established for each recommended statistic. In general, model simulation can be judged
as satisfactory if NSE > 0.50 and RSR < 0.70, and if PBIAS � 25% for streamflow, PBIAS � 55% for sediment, and PBIAS
�  70% for N and P. For PBIAS, constituent-specific performance ratings were determined based on uncertainty of measured
data. Additional considerations related to model evaluation guidelines are also discussed. These considerations include:
single-event simulation, quality and quantity of measured data, model calibration procedure, evaluation time step, and project
scope and magnitude. A case study illustrating the application of the model evaluation guidelines is also provided.
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omputer-based watershed models can save time
and money because of their ability to perform long-
term simulation of the effects of watershed pro-
cesses and management activities on water quality,

water quantity, and soil quality. These models also facilitate
the simulation of various conservation program effects and
aid policy design to mitigate water and soil quality degrada-
tion by determining suitable conservation programs for par-
ticular watersheds and agronomic settings. In order to use
model outputs for tasks ranging from regulation to research,
models should be scientifically sound, robust, and defensible
(U.S. EPA, 2002).
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Sensitivity analysis is the process of determining the rate
of change in model output with respect to changes in model
inputs (parameters). It is a necessary process to identify key
parameters and parameter precision required for calibration
(Ma et al., 2000). Model calibration is the process of estimat-
ing model parameters by comparing model predictions (out-
put) for a given set of assumed conditions with observed data
for the same conditions. Model validation involves running
a model using input parameters measured or determined dur-
ing the calibration process. According to Refsgaard (1997),
model validation is the process of demonstrating that a given
site-specific model is capable of making “sufficiently accu-
rate” simulations, although “sufficiently accurate” can vary
based on project goals. According to the U.S. EPA (2002), the
process used to accept, reject, or qualify model results should
be established and documented before beginning model eval-
uation. Although ASCE (1993) emphasized the need to clear-
ly define model evaluation criteria, no commonly accepted
guidance has been established, but specific statistics and per-
formance ratings for their use have been developed and used
for model evaluation (Donigian et al., 1983; Ramanarayanan
et al., 1997; Gupta et al., 1999; Motovilov et al., 1999; Saleh
et al., 2000; Santhi et al., 2001; Singh et al., 2004; Bracmort
et al., 2006; Van Liew et al., 2007). However, these perfor-
mance ratings are model and project specific. Standardized
guidelines are needed to establish a common system for judg-
ing model performance and comparing various models
(ASCE, 1993). Once established, these guidelines will assist
modelers in preparing and reviewing quality assurance proj-
ect plans for modeling (U.S. EPA, 2002) and will increase ac-
countability and public acceptance of models to support
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scientific research and to guide policy, regulatory, and man-
agement decision-making.

A number of publications have addressed model evalua-
tion statistics (Willmott, 1981; ASCE, 1993; Legates and
McCabe, 1999), but they do not include recently developed
statistics (e.g., Wang and Melesse, 2005; Parker et al., 2006).
More importantly, none of the previous publications provide
guidance on acceptable ranges of values for each statistic.
Borah and Bera (2004) present an excellent review of values
for various statistics used in hydrologic and nonpoint-source
model applications, but more elaborate analysis is needed to
aid modelers in determining performance ratings for these
statistics.

In most watershed modeling projects, model output is
compared to corresponding measured data with the assump-
tion that all error variance is contained within the predicted
values and that observed values are error free. In discussions
of model evaluation statistics, Willmott (1981) and ASCE
(1993) do recognize that measured data are not error free, but
measurement error is not considered in their recommenda-
tions perhaps because of the relative lack of data on measure-
ment uncertainty. However, uncertainty estimates for
measured streamflow and water quality data have recently
become available (Harmel et al., 2006) and should be consid-
ered when calibrating, validating, and evaluating watershed
models because of differences in inherent uncertainty be-
tween measured flow, sediment, and nutrient data.

The importance of standardized guidelines for model
evaluation is illustrated by the Conservation Effects Assess-
ment Project Watershed Assessment Study (CEAP-WAS,
2005). The CEAP-WAS seeks to quantify the environmental
benefits of conservation practices supported by USDA in the
2002 Farm Bill, also known as the Farm Security and Rural
Investment Act. One of the CEAP-WAS goals is to formulate
guidelines for calibration, validation, and application of
models used in CEAP to simulate environmental effects of
conservation practices. Thus, based on the need for standard-
ized model evaluation guidelines to support watershed mod-
eling in CEAP-WAS and other projects, the objectives for the
present research were to: (1) determine recommended model
evaluation techniques (statistical and graphical), (2) review
reported ranges of values and corresponding performance
ratings for the recommended statistics, and (3) establish
guidelines for model evaluation based on the review results
and project-specific considerations. In addition, a case study
illustrating the application of the model evaluation guide-
lines was provided. This research focuses on watershed mod-
el evaluation guidelines for streamflow, sediments, and
nutrients. Throughout this article, “model evaluation” refers
to the applicable steps of sensitivity analysis, calibration, val-
idation, uncertainty analysis, and application.

METHODS
MODEL EVALUATION TECHNIQUES

To determine recommended techniques for watershed
model evaluation, an extensive review was conducted on
published literature related to calibration, validation, and ap-
plication of watershed models. Specifically, the information
compiled focused on the strengths and weaknesses of each
statistical and graphical technique and on recommendations
for their application. The recommended model evaluation

statistics were selected based on the following factors: (1) ro-
bustness in terms of applicability to various constituents,
models, and climatic conditions; (2) commonly used, accept-
ed, and recommended in published literature; and (3) identi-
fied strengths in model evaluation. The trade-off between
long-term bias and residual variance was also considered, as
recommended by Boyle et al. (2000). Bias measures the aver-
age tendency of the simulated constituent values to be larger
or smaller than the measured data. Residual variance is the
difference between the measured and simulated values, often
estimated by the residual mean square or root mean square er-
ror (RMSE). According to Boyle et al. (2000), optimizing
RMSE during model calibration may give small error vari-
ance but at the expense of significant model bias. The com-
pilation of recommended statistics was also constrained by
the recommendation of Legates and McCabe (1999) to in-
clude at least one dimensionless statistic and one absolute er-
ror index statistic with additional information such as the
standard deviation of measured data, and to include at least
one graphical technique as well.

REPORTED VALUE RANGES AND PERFORMANCE RATINGS
FOR RECOMMENDED STATISTICS

Additional literature review was conducted to determine
published ranges of values and performance ratings for rec-
ommended model evaluation statistics. Reported daily and
monthly values during the calibration and validation periods
for streamflow, sediment, and nutrients are recorded along
with the model used for evaluation in tables A-1 through A-9
in the Appendix. All the reported data were analyzed and
compiled into a summary of daily and monthly value ranges
for different constituents during calibration and validation
(table 1). The summary values in table 1 include the sample
size of the reported values (n) and the minimum, maximum,
and median of the values reported for streamflow, surface
runoff, sediment, organic, mineral and total nitrogen, and or-
ganic, mineral, and total phosphorus.

MODEL EVALUATION GUIDELINES

General model evaluation guidelines that consider the rec-
ommended model evaluation statistics with corresponding
performance ratings and appropriate graphical analyses were
then established. A calibration procedure chart for flow, sedi-
ment, and nutrients, similar to the one proposed by Santhi et
al. (2001), is included to assist in application of the model
evaluation guidelines to manual model calibration. It is
noted, however, that these guidelines should be adjusted by
the modeler based on additional considerations such as:
single-event simulation, quality and quantity of measured
data, model calibration procedure, evaluation time step, and
project scope and magnitude. Additionally, a brief discussion
of the implications of unmet performance ratings is provided.

RESULTS AND DISCUSSION
MODEL EVALUATION TECHNIQUES

Both statistical and graphical model evaluation tech-
niques were reviewed. The quantitative statistics were divid-
ed into three major categories: standard regression,
dimensionless, and error index. Standard regression statistics
determine the strength of the linear relationship between sim-
ulated and measured data. Dimensionless techniques provide
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a relative model evaluation assessment, and error indices
quantify the deviation in the units of the data of interest (Leg-
ates and McCabe, 1999). A brief discussion of numerous
model evaluation statistics (both recommended statistics and
statistics not selected for recommendation) appears subse-
quently; however, the relevant calculations are provided only
for the recommended statistics.

Several graphical techniques are also described briefly be-
cause graphical techniques provide a visual comparison of
simulated and measured constituent data and a first overview
of model performance (ASCE, 1993) and are essential to ap-
propriate model evaluation (Legates and McCabe, 1999).
Based on recommendations by ASCE (1993) and Legates
and McCabe (1999), we recommend that both graphical tech-
niques and quantitative statistics be used in model evalua-
tion.

MODEL EVALUATION STATISTICS (STANDARD REGRESSION)
Slope and  y-intercept: The slope and y-intercept of the

best-fit regression line can indicate how well simulated data
match measured data. The slope indicates the relative rela-
tionship between simulated and measured values. The y-
intercept indicates the presence of a lag or lead between
model predictions and measured data, or that the data sets are
not perfectly aligned. A slope of 1 and y-intercept of 0 indi-
cate that the model perfectly reproduces the magnitudes of
measured data (Willmott, 1981). The slope and y-intercept
are commonly examined under the assumption that measured
and simulated values are linearly related, which implies that
all of the error variance is contained in simulated values and
that measured data are error free (Willmott, 1981). In reality,
measured data are rarely, if ever, error free. Harmel et al.
(2006) showed that substantial uncertainty in reported water
quality data can result when individual errors from all proce-
dural data collection categories are considered. Therefore,
care needs to be taken while using regression statistics for
model evaluation.

Pearson’s correlation coefficient (r) and coefficient of
determination (R2): Pearson’s correlation coefficient (r)
and coefficient of determination (R2) describe the degree of
collinearity between simulated and measured data. The cor-
relation coefficient, which ranges from −1 to 1, is an index of
the degree of linear relationship between observed and simu-
lated data. If r = 0, no linear relationship exists. If r = 1 or −1,
a perfect positive or negative linear relationship exists. Simi-
larly, R2 describes the proportion of the variance in measured
data explained by the model. R2 ranges from 0 to 1, with high-
er values indicating less error variance, and typically values
greater than 0.5 are considered acceptable (Santhi et al.,
2001, Van Liew et al., 2003). Although r and R2 have been
widely used for model evaluation, these statistics are over-
sensitive to high extreme values (outliers) and insensitive to
additive and proportional differences between model predic-
tions and measured data (Legates and McCabe, 1999).

MODEL EVALUATION STATISTICS (DIMENSIONLESS)
Index of agreement (d): The index of agreement (d) was

developed by Willmott (1981) as a standardized measure of
the degree of model prediction error and varies between 0 and
1. A computed value of 1 indicates a perfect agreement be-
tween the measured and predicted values, and 0 indicates no
agreement at all (Willmott,  1981). The index of agreement

represents the ratio between the mean square error and the
“potential  error” (Willmott,  1984). The author defined poten-
tial error as the sum of the squared absolute values of the dis-
tances from the predicted values to the mean observed value
and distances from the observed values to the mean observed
value. The index of agreement can detect additive and pro-
portional differences in the observed and simulated means
and variances; however, d is overly sensitive to extreme val-
ues due to the squared differences (Legates and McCabe,
1999). Legates and McCabe (1999) suggested a modified in-
dex of agreement (d1) that is less sensitive to high extreme
values because errors and differences are given appropriate
weighting by using the absolute value of the difference
instead of using the squared differences. Although d1 has
been proposed as an improved statistic, its limited use in the
literature has not provided extensive information on value
ranges.

Nash-Sutcliffe efficiency (NSE): The Nash-Sutcliffe ef-
ficiency (NSE) is a normalized statistic that determines the
relative magnitude of the residual variance (“noise”)
compared to the measured data variance (“information”)
(Nash and Sutcliffe, 1970). NSE indicates how well the plot
of observed versus simulated data fits the 1:1 line. NSE is
computed as shown in equation 1:
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where Yi obs is the ith observation for the constituent being
evaluated,  Yi sim is the ith simulated value for the constituent
being evaluated, Ymean is the mean of observed data for the
constituent being evaluated, and n is the total number of ob-
servations.

NSE ranges between −∞  and 1.0 (1 inclusive), with NSE =
1 being the optimal value. Values between 0.0 and 1.0 are
generally viewed as acceptable levels of performance,
whereas values <0.0 indicates that the mean observed value
is a better predictor than the simulated value, which indicates
unacceptable  performance.

NSE was recommended for two major reasons: (1) it is
recommended for use by ASCE (1993) and Legates and
McCabe (1999), and (2) it is very commonly used, which pro-
vides extensive information on reported values. Sevat and
Dezetter (1991) also found NSE to be the best objective func-
tion for reflecting the overall fit of a hydrograph. Legates and
McCabe (1999) suggested a modified NSE that is less sensi-
tive to high extreme values due to the squared differences, but
that modified version was not selected because of its limited
use and resulting relative lack of reported values.

Persistence model efficiency (PME): Persistence model
efficiency (PME) is a normalized model evaluation statistic
that quantifies the relative magnitude of the residual variance
(“noise”) to the variance of the errors obtained by the use of
a simple persistence model (Gupta et al., 1999). PME ranges
from 0 to 1, with PME = 1 being the optimal value. PME val-
ues should be larger than 0.0 to indicate “minimally accept-
able” model performance (Gupta et al., 1999). The power of
PME is derived from its comparison of model performance
with a simple persistence forecast model. According to Gupta
et al. (1999), PME is capable of clearly indicating poor model
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performance,  but it has been used only occasionally in the lit-
erature, so a range of reported values is not available.

Prediction efficiency (Pe): Prediction efficiency (Pe), as
explained by Santhi et al. (2001), is the coefficient of deter-
mination (R2) calculated by regressing the rank (descending)
of observed versus simulated constituent values for a given
time step. Pe determines how well the probability distribu-
tions of simulated and observed data fit each other. However,
it has not been used frequently enough to provide extensive
information on ranges of values. In addition, it may not ac-
count for seasonal bias.

Performance virtue statistic (PVk): The performance
virtue statistic (PVk) is the weighted average of the Nash-
Sutcliffe coefficients, deviations of volume, and error func-
tions across all flow gauging stations within the watershed of
interest (Wang and Melesse, 2005). PVk was developed to as-
sess if watershed models can satisfactorily predict all aspects
(profile, volume, and peak) of observed flow hydrographs for
watersheds with more than one gauging station (Wang and
Melesse, 2005). PVk can range from −∞  to 1.0, with a PVk
value of 1.0 indicating that the model exactly simulates all
three aspects of observed flow for all gauging stations within
the watershed. A negative PVk value indicates that the aver-
age of observed streamflow values is better than simulated
streamflows (Wang and Melesse, 2005). PVk was developed
for use in snow-fed watersheds; therefore, it may be neces-
sary to make adjustments to this statistic for rain-fed wa-
tersheds. PVk was not selected for recommendation because
it was developed for streamflow only. In addition, PVk was
only recently developed; thus, extensive information on val-
ue ranges is not available.

Logarithmic transformation variable (e): The logarith-
mic transformation variable (e) is the logarithm of the pre-
dicted/observed data ratio (E) that was developed to address
the sensitivity of the watershed-scale pesticide model error
index (E) to the estimated pesticide application rates (Parker
et al., 2006). The value of e is centered on zero, is symmetri-
cal in under- or overprediction, and is approximately normal-
ly distributed (Parker et al., 2006). If the simulated and
measured data are in complete agreement, then e = 0 and E =
1.0. Values of e < 0 are indicative of underprediction; values
> 0 are indicative of overprediction. Although e has great po-
tential as an improved statistical technique for assessing
model accuracy, it was not selected because of its recent de-
velopment and limited testing and application.

MODEL EVALUATION STATISTICS (ERROR INDEX)
MAE, MSE, and RMSE: Several error indices are com-

monly used in model evaluation. These include mean abso-
lute error (MAE), mean square error (MSE), and root mean
square error (RMSE). These indices are valuable because
they indicate error in the units (or squared units) of the con-
stituent of interest, which aids in analysis of the results.
RMSE, MAE, and MSE values of 0 indicate a perfect fit.
Singh et al. (2004) state that RMSE and MAE values less than
half the standard deviation of the measured data may be con-
sidered low and that either is appropriate for model evalua-
tion. A standardized version of the RMSE was selected for
recommendation  and is described later in this section.

Percent bias (PBIAS): Percent bias (PBIAS) measures
the average tendency of the simulated data to be larger or
smaller than their observed counterparts (Gupta et al., 1999).

The optimal value of PBIAS is 0.0, with low-magnitude val-
ues indicating accurate model simulation. Positive values in-
dicate model underestimation bias, and negative values
indicate model overestimation bias (Gupta et al., 1999).
PBIAS is calculated with equation 2:
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where PBIAS is the deviation of data being evaluated, ex-
pressed as a percentage.

Percent streamflow volume error (PVE; Singh et al.,
2004), prediction error (PE; Fernandez et al., 2005), and per-
cent deviation of streamflow volume (Dv) are calculated in
a similar manner as PBIAS. The deviation term (Dv) is used
to evaluate the accumulation of differences in streamflow
volume between simulated and measured data for a particular
period of analysis.

PBIAS was selected for recommendation for several rea-
sons: (1) Dv was recommended by ASCE (1993), (2) Dv is
commonly used to quantify water balance errors and its use
can easily be extended to load errors, and (3) PBIAS has the
ability to clearly indicate poor model performance (Gupta et
al., 1999). PBIAS values for streamflow tend to vary more,
among different autocalibration methods, during dry years
than during wet years (Gupta et al., 1999). This fact should
be considered when attempting to do a split-sample evalua-
tion, one for calibration and one for validation.

RMSE-observations standard deviation ratio (RSR):
RMSE is one of the commonly used error index statistics
(Chu and Shirmohammadi, 2004; Singh et al., 2004;
Vasquez-Amábile  and Engel, 2005). Although it is common-
ly accepted that the lower the RMSE the better the model per-
formance, only Singh et al. (2004) have published a guideline
to qualify what is considered a low RMSE based on the ob-
servations standard deviation. Based on the recommendation
by Singh et al. (2004), a model evaluation statistic, named the
RMSE-observations standard deviation ratio (RSR), was de-
veloped. RSR standardizes RMSE using the observations
standard deviation, and it combines both an error index and
the additional information recommended by Legates and
McCabe (1999). RSR is calculated as the ratio of the RMSE
and standard deviation of measured data, as shown in equa-
tion 3:
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RSR incorporates the benefits of error index statistics and
includes a scaling/normalization factor, so that the resulting
statistic and reported values can apply to various constitu-
ents. RSR varies from the optimal value of 0, which indicates
zero RMSE or residual variation and therefore perfect model
simulation, to a large positive value. The lower RSR, the low-
er the RMSE, and the better the model simulation perfor-
mance.
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Daily root-mean square (DRMS): The daily root-mean
square (DRMS), which is a specific application of the RMSE,
computes the standard deviation of the model prediction er-
ror (difference between measured and simulated values). The
smaller the DRMS value, the better the model performance
(Gupta et al., 1999). Gupta et al. (1999) determined that
DRMS increased with wetness of the year, indicating that the
forecast error variance is larger for higher flows. According
to Gupta et al. (1999), DRMS had limited ability to clearly
indicate poor model performance.

GRAPHICAL TECHNIQUES

Graphical techniques provide a visual comparison of sim-
ulated and measured constituent data and a first overview of
model performance (ASCE, 1993). According to Legates and
McCabe (1999), graphical techniques are essential to ap-
propriate model evaluation. Two commonly used graphical

techniques, hydrographs and percent exceedance probability
curves, are especially valuable. Other graphical techniques,
such as bar graphs and box plots, can also be used to examine
seasonal variations and data distributions.

A hydrograph is a time series plot of predicted and mea-
sured flow throughout the calibration and validation periods.
Hydrographs help identify model bias (ASCE, 1993) and can
identify differences in timing and magnitude of peak flows
and the shape of recession curves.

Percent exceedance probability curves, which often are
daily flow duration curves, can illustrate how well the model
reproduces the frequency of measured daily flows throughout
the calibration and validation periods (Van Liew et al., 2007).
General agreement between observed and simulated fre-
quencies for the desired constituent indicates adequate simu-
lation over the range of the conditions examined (Singh et al.,
2004).

Table 1. Summary statistics from the literature review of reported NSE and PBIAS values.[a]

Calibration Validation

NSE PBIAS NSE PBIAS

Constituent Statistic Daily Monthly Daily Monthly Daily Monthly Daily Monthly

Streamflow

n 92 33 72 0 128 70 82 0
Minimum -0.23 0.14 -91.70 na -1.81 -3.35 -155.60 na
Maximum 0.95 0.91 26.50 na 0.89 0.93 47.18 na

Median 0.89 0.79 -1.30 na 0.67 0.63 -1.90 na

Surface runoff

n 0 2 0 0 0 2 0 0
Minimum na 0.35 na na na 0.63 na na
Maximum na 0.62 na na na 0.77 na na

Median na 0.49 na na na 0.70 na na

Sediment

n 2 6 0 0 2 6 0 0
Minimum -2.50 0.49 na na -3.51 -2.46 na na
Maximum 0.11 0.86 na na 0.23 0.88 na na

Median -1.20 0.76 na na -1.64 0.64 na na

Organic nitrogen
(organic N)

n 0 2 0 0 0 2 0 0
Minimum na 0.57 na na na 0.43 na na
Maximum na 0.58 na na na 0.73 na na

Median na 0.58 na na na 0.58 na na

Mineral nitrogen
(NO3-N)

n 0 2 0 0 0 2 0 0
Minimum na -0.08 na na na 0.64 na na
Maximum na 0.59 na na na 0.75 na na

Median na 0.26 na na na 0.70 na na

Total nitrogen
(organic N + NO3-N)

n 0 0 0 0 1 6 0 0
Minimum na na na na 0.19 0.10 na na
Maximum na na na na 0.19 0.85 na na

Median na na na na 0.19 0.76 na na

Organic phosphorus
(organic P)

n 0 2 0 0 0 2 0 0
Minimum na 0.59 na na na 0.39 na na
Maximum na 0.70 na na na 0.72 na na

Median na 0.65 na na na 0.56 na na

Mineral phosphorus
(PO4-P)

n 0 3 0 0 0 3 0 0
Minimum na 0.53 na na na 0.51 na na
Maximum na 0.78 na na na 0.81 na na

Median na 0.59 na na na 0.53 na na

Total phosphorus
(organic P + PO4-P)

n 0 1 0 0 0 1 0 0
Minimum na 0.51 na na na 0.37 na na
Maximum na 0.51 na na na 0.37 na na

Median na 0.51 na na na 0.37 na na
[a] n = number of reported values for the studies reviewed (sample size), NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias, 

and na = not available (used when n = 0).
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REPORTED RANGES OF VALUES FOR RECOMMENDED STATIS-
TICS

A review of published literature produced ranges of daily
and monthly NSE and PBIAS values for both model calibra-
tion and validation for surface runoff, streamflow, and se-
lected constituents, including: sediment, organic nitrogen,
mineral nitrogen, total nitrogen, organic phosphorus, and
mineral phosphorus (tables A-1 through A-9). A few weekly
values reported by Narasimhan et al. (2005) are also included
to indicate ranges of values for a weekly time step. It is impor-
tant to note that calibration and validation were performed for
different time periods; thus, the reported values reflect this
difference. A summary of reported values for each constitu-
ent appears in table 1. Median values instead of means are in-
cluded because medians are less sensitive to extreme values
and are better indicators for highly skewed distributions.

Most of the reviewed studies performed model calibration
and validation based on streamflow (table 1). This is attrib-
uted to the relative abundance of measured long-term stream-
flow data compared to sediment or nutrient data. Based on the
summary information for streamflow calibration and valida-
tion, daily NSE values tended to be higher than monthly val-
ues, which contradicts findings from some individual studies
(e.g., Fernandez et al., 2005; Singh et al., 2005; Van Liew et
al., 2007). This anomaly is potentially due to the increased
sample sizes (n) for daily data. As expected, NSE and PBIAS
values for streamflow were better for the calibration periods
than the validation periods.

REPORTED PERFORMANCE RATINGS FOR RECOMMENDED
STATISTICS

A review of published literature resulted in the perfor-
mance ratings for NSE and PBIAS shown in tables 2 and 3.
Because RSR was developed in this research, similar re-
ported performance ratings are not available. Therefore, RSR
ratings were based on Singh et al. (2004) recommendations
that RMSE values less than half the standard deviation of
measured data can be considered low. In this study, we used
the recommended less than 0.5 RSR value as the most strin-
gent (“very good”) rating and suggested two less stringent
ratings of 10% and 20% greater than this value for the “good”
and “satisfactory” ratings, respectively.

MODEL EVALUATION GUIDELINES BASED ON PERFORMANCE

RATINGS
General model evaluation guidelines, for a monthly time

step, were developed based on performance ratings for the
recommended statistics and on project-specific consider-
ations. As stated previously, graphical techniques, especially
hydrographs and percent exceedance probability curves, pro-
vide visual model evaluation overviews. Utilizing these im-
portant techniques should typically be the first step in model
evaluation.  A general visual agreement between observed
and simulated constituent data indicates adequate calibration
and validation over the range of the constituent being simu-
lated (Singh et al., 2004).

Table 2. Reported performance ratings for NSE.

Model Value
Performance

Rating Modeling Phase Reference

HSPF >0.80 Satisfactory Calibration and validation Donigian et al. (1983)
APEX >0.40 Satisfactory Calibration and validation (daily) Ramanarayanan et al. (1997)

SAC-SMA <0.70 Poor Autocalibration Gupta et al. (1999)
SAC-SMA >0.80 Efficient Autocalibration Gupta et al. (1999)

DHM >0.75 Good Calibration and validation Motovilov et al. (1999)[a]

DHM 0.36 to 0.75 Satisfactory Calibration and validation Motovilov et al. (1999)[a]

DHM <0.36 Unsatisfactory Calibration and validation Motovilov et al. (1999)[a]

SWAT >0.65 Very good Calibration and validation Saleh et al. (2000)
SWAT 0.54 to 0.65 Adequate Calibration and validation Saleh et al. (2000)
SWAT >0.50 Satisfactory Calibration and validation Santhi et al. (2001); adapted by Bracmort et al. (2006)

SWAT and HSPF >0.65 Satisfactory Calibration and validation Singh et al. (2004); adapted by Narasimhan et al. (2005)
[a] Adapted by Van Liew et al. (2003) and Fernandez et al. (2005).

Table 3. Reported performance ratings for PBIAS.

Model Value
Performance

Rating Modeling Phase Reference

HSPF < 10% Very good Calibration and validation Donigian et al. (1983)[a]

HSPF 10% to 15% Good Calibration and validation Donigian et al. (1983)[a]

HSPF 15% to 25% Fair Calibration and validation Donigian et al. (1983)[a]

SWAT <15% Satisfactory Flow calibration Santhi et al. (2001)
SWAT <20% Satisfactory For sediment after flow calibration Santhi et al. (2001)
SWAT <25% Satisfactory For nitrogen after flow and sediment calibration Santhi et al. (2001)
SWAT 20% Satisfactory Calibration and validation Bracmort et al. (2006)
SWAT <10% Very good Calibration and validation Van Liew et al. (2007)
SWAT <10% to <15% Good Calibration and validation Van Liew et al. (2007)
SWAT <15% to <25% Satisfactory Calibration and validation Van Liew et al. (2007)
SWAT >25% Unsatisfactory Calibration and validation Van Liew et al. (2007)

[a] Adapted by Van Liew et al. (2003) and Singh et al. (2004).
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Table 4. General performance ratings for recommended statistics for a monthly time step.

Performance
Rating RSR NSE

PBIAS (%)

Streamflow Sediment N, P

Very good 0.00 < RSR < 0.50 0.75 < NSE < 1.00 PBIAS < ±10 PBIAS < ±15 PBIAS< ±25
Good 0.50 < RSR < 0.60 0.65 < NSE < 0.75 ±10 < PBIAS < ±15 ±15 < PBIAS < ±30 ±25 < PBIAS < ±40

Satisfactory 0.60 < RSR < 0.70 0.50 < NSE < 0.65 ±15 < PBIAS < ±25 ±30 < PBIAS < ±55 ±40 < PBIAS < ±70
Unsatisfactory RSR > 0.70 NSE < 0.50 PBIAS > ±25 PBIAS > ±55 PBIAS > ±70

Separate surface runoff (SR) and
baseflow (BF) for measured daily flow

NSE = Nash−Suttcliffe efficiency
RSR = RME/OBSTDEV ratio

Calibration complete

Yes No

NoYes

NoYes

Yes No

NoYes

Run model, then initial
graphical analysis

Adjust appropriate
parameters

Run model, then
graphical analysis

Run model, then
graphical analysis

Run model, then
graphical analysis

Run model, then
graphical analysis

Adjust appropriate
parameters

Adjust appropriate
parameters

Adjust appropriate
parameters

Adjust appropriate
parameters

If average of
Sim SR is ±10%

of average Meas SR
and

NSE > 0.65
RSR < 0.60

If average of
Sim BF is ±10%

of average Meas BF
and

NSE > 0.65
RSR < 0.60

If average of
Sim Sed is ±15%

of average Meas Sed
and

NSE > 0.65
RSR < 0.60

If average of
Sim Org N&P is ±25%

of average Meas Org N&P
and

NSE = 0.65
RSR = 0.60

If average of
Sim Min N&P is ±25%
of average Meas N&P

and
NSE = 0.65
RSR = 0.60

Figure 1. General calibration procedure for flow, sediment, and nutrients
in the watershed models (based on calibration chart for SWAT from San-
thi et al., 2001).

The next step should be to calculate values for NSE,
PBIAS, and RSR. With these values, model performance can
be judged based on general performance ratings (table 4).
The reported performance ratings and corresponding values
developed for individual studies, in addition to the reported

ranges of values (table 1), were used to establish general per-
formance ratings, which appear in table 4. As shown in
table 4, the performance ratings for RSR and NSE are the
same for all constituents, but PBIAS is constituent specific.
This difference is due to the recent availability of information
(PBIAS) on the uncertainty of measured streamflow and wa-
ter quality. Harmel et al. (2006) used the root mean square er-
ror propagation method of Topping (1972) to calculate the
cumulative probable error resulting from four procedural
categories (discharge measurement, sample collection, sam-
ple preservation and storage, and laboratory analysis) associ-
ated with water quality data collection. Under typical
scenarios with reasonable quality control attention, typical
financial and personnel resources, and typical hydrologic
conditions, cumulative probable error ranges (in similar units
to PBIAS) were estimated to be 6% to 19% for streamflow,
7% to 53% for sediment, and 8% to 110% for N and P. These
results were used to establish constituent-specific perfor-
mance rating for PBIAS. Constituent-specific ratings for
RSR and NSE can be established when similar information
becomes available.

Based on table 4, model performance can be evaluated as
“satisfactory” if NSE > 0.50 and RSR < 0.70 and, for mea-
sured data of typical uncertainty, if PBIAS ± 25% for stream-
flow, PBIAS ± 55% for sediment, and PBIAS ± 70% for N and
P for a monthly time step. These ratings should be adjusted
to be more or less strict based on project-specific consider-
ations discussed in the next section.

A general calibration procedure chart (fig. 1) for flow, sed-
iment, and nutrients is included to aid with the manual model
calibration process. The recommended values for adequate
model calibration are within the “good” and “very good” per-
formance ratings presented in table 4. These limits for ade-
quate manual calibration are stricter than the “satisfactory”
rating for general model evaluation because model parameter
values are optimized during calibration but not during model
validation or application. The importance of and appropriate
methods for proper model calibration are discussed in the
next section.

ADDITIONAL CONSIDERATIONS

The model evaluation guidelines presented in the previous
section apply to the typical case of continuous, long-term
simulation for a monthly time step. However, because of the
diversity of modeling applications, these guidelines should
be adjusted based on single-event simulation, quality and
quantity of measured data, model calibration procedure,
evaluation time step, and project scope and magnitude.

Single-Event Simulation
When watershed models are applied on a single-event ba-

sis, evaluation guidelines should reflect this specific case.
Generally, the objectives of single-event modeling are the de-
termination of peak flow rate and timing, flow volume, and
recession curve shape (ASCE, 1993; Van Liew et al., 2003).
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Accurate prediction of peak flow rate and time-to-peak is es-
sential for flood estimation and forecasting (Ramírez, 2000).
Time-to-peak is affected by drainage network density, slope,
channel roughness, and soil infiltration characteristics
(Ramírez, 2000), and peak flow rate is typically affected by
rainfall intensity and antecedent soil moisture content,
among other factors.

One of the recommended (ASCE, 1993) model evaluation
statistics for the peak flow rate is a simple percent error in
peak flow rates (PEP) computed by dividing the difference
between the simulated peak flow rate and measured peak
flow rate by the measured peak flow rate and expressing the
result as a percentage. Model performance related to time-to-
peak can be determined similarly. In addition, for single-
event simulation, Boyle et al. (2000) recommended that the
hydrograph be divided into three phases (rising limb, falling
limb, baseflow) based on differing watershed behavior dur-
ing rainfall and dry periods. A different performance rating
should be applied to each hydrograph phase. If the perfor-
mance ratings are similar for each phase, then a single perfor-
mance rating can be applied to the overall hydrograph in
subsequent evaluation. Otherwise, a different performance
rating should be used to evaluate each hydrograph phase.

Quality and Quantity of Measured Data
Although it is commonly accepted that measured data are

inherently uncertain, the uncertainty is rarely considered in
model evaluation, perhaps because of the lack of relevant
data. Harmel et al. (2006) suggested that the uncertainty of
measured data, which varies based on measurement condi-
tions, techniques, and constituent type, must be considered to
appropriately evaluate watershed models. In terms of the
present guidelines and performance ratings, modeled stream-
flow may be rated “good” if it is within 10% to 15% of mea-
sured streamflow data of typical quality (table 4), for
example. In contrast, performance ratings should be stricter
when high-quality (low uncertainty) data are available. In
this case, PBIAS for modeled streamflow may be required to
be <10% to receive a “good” rating. If data collected in worst-
case conditions are used for model evaluation, then perfor-
mance ratings should be relaxed to reflect the extreme
uncertainty. It can be argued in this case, however, that highly
uncertain data offer little value and should not be used in
model evaluation.

Finally, in situations when a complete measured time se-
ries does not exist, for instance when only a few grab samples
per year are available, the data may not be sufficient for anal-
ysis using the recommended statistics. In such situations,
comparison of frequency distributions and/or percentiles
(e.g., 10th, 25th, 50th, 75th, and 90th) may be more appropri-
ate than the quantitative statistics guidelines.

Model Calibration Procedure
Proper model calibration is important in hydrologic mod-

eling studies to reduce uncertainty in model simulations (En-
gel et al., 2007). Ideal model calibration involves: (1) using
data that includes wet, average, and dry years (Gan et al.,
1997), (2) using multiple evaluation techniques (Willmott,
1981; ASCE, 1993; Legates and McCabe, 1999; Boyle et al.,
2000), and (3) calibrating all constituents to be evaluated.

The calibration procedure typically involves a sensitivity
analysis followed by manual or automatic calibration. The
most fundamental sensitivity analysis technique utilizes par-
tial differentiation, whereas the simplest method involves

perturbing parameter values one at a time (Hamby, 1994). A
detailed review of sensitivity analysis methods is presented
by Hamby (1994) and Isukapalli (1999). According to Isuka-
palli (1999), the choice of a sensitivity method depends on
the sensitivity measure employed, the desired accuracy in the
estimates of the sensitivity measure, and the computational
cost involved. Detailed information on how these factors af-
fect the choice of sensitivity analysis method is given by Isu-
kapalli (1999). After key parameters and their respective
required precision have been determined, manual or auto-
matic calibration is done.

Conventionally, calibration is done manually and consists
of changing model input parameter values to produce simu-
lated values that are within a certain range of measured data
(Balascio et al., 1998). The calibrated model may be used to
simulate multiple processes, such as streamflow volumes,
peak flows, and/or sediment and nutrient loads. In such cases,
two or more model evaluation statistics may be necessary in
order to address the different processes (Balascio et al.,
1998). However, when the number of parameters used in the
manual calibration is large, especially for complex hydrolog-
ic models, manual calibration can become labor-intensive
(Balascio et al., 1998). In this, case automatic calibration is
more appropriate.

Automatic calibration involves computation of the predic-
tion error using an equation (objective function) and an auto-
matic optimization procedure (search algorithm) to search for
parameter values that optimize the value of the objective func-
tion (Gupta et al., 1999). One of the automatic calibration meth-
ods is the shuffled complex evolution global optimization
algorithm developed at the University of Arizona (SCE-UA)
(Duan et al., 1993) and used by vanGriensven and Bauwens
(2003) to develop a multi-objective calibration method for
semi-distributed water quality models. Other automatic calibra-
tion methods include the multilevel calibration (MLC) semi-
automated method (Brazil, 1988), the multi-objective complex
evolution algorithm (MOCOM-UA) (Yapo et al., 1998), and pa-
rameter estimation by sequential testing (PEST) (Taylor and
Creelman, 1967), among others.

Data used to calibrate model simulations have a direct ef-
fect on the validation and evaluation results. Ideal calibration
should use 3 to 5 years of data that includes average, wet, and
dry years so that the data encompass a sufficient range of
hydrologic events to activate all model constituent processes
during calibration (Gan et al., 1997). However, if this is not
possible, then the available data should be separated into two
sets, i.e., “above-mean” flows (wet years) and “below-mean”
flows (dry years), and then evaluated with stricter perfor-
mance ratings required for wet years (Gupta et al., 1999).
Moreover, if the goal is to test the robustness of the model ap-
plications under different environmental conditions, then dif-
ferent datasets can be used during model calibration and
validation.

In addition, a good calibration procedure uses multiple
statistics, each covering a different aspect of the hydrograph,
so that the whole hydrograph is covered. This is important be-
cause using a single statistic can lead to undue emphasis on
matching one aspect of the hydrograph at the expense of other
aspects (Boyle et al., 2000). For manual calibration, each sta-
tistic should be tracked while adjusting model parameters
(Boyle et al., 2000) to allow for balancing the trade-offs in the
ability of the model to simulate various aspects of the hydro-
graph while recognizing potential errors in the observed data.



893Vol. 50(3): 885−900

Finally, ideal model calibration considers water balance
(peak flow, baseflow) and sediment and nutrient transport be-
cause calibrating one constituent will not ensure that other
constituents are adequately simulated during validation.
Even though a complete set of hydrologic and water quality
data are rarely available, all available data should be consid-
ered. To calibrate water balance, it is recommended to sepa-
rate baseflow and surface flow (surface runoff) from the total
streamflow for both the measured and simulated data using
a baseflow filter program. The baseflow filter developed by
Arnold et al. (1995) and modified by Arnold and Allen (1999)
is available at www.brc.tamus.edu/swat/soft_baseflow .html.
Baseflow and recharge data from this procedure have shown
good correlation with those produced by SWAT (Arnold et
al., 2000). With estimated baseflow data, the baseflow ratio
can be computed for measured and simulated data by divid-
ing baseflow estimates by the total measured or simulated
streamflow. The calibration and validation process can be
considered satisfactory if the estimated baseflow ratio for
simulated flow is within 20% of the measured flow baseflow
ratio (Bracmort et al., 2006). Because plant growth and bio-
mass production can have an effect on the water balance, rea-
sonable local/regional plant growth days and biomass
production may need to be verified during model calibration.
Annual local/regional evapotranspiration (ET) may also
need to be verified or compared with measured estimates dur-
ing model calibration.

Stricter performance ratings should generally be required
during model calibration than during validation. This differ-
ence is recommended because parameter values are opti-
mized during model calibration, but parameters are not
adjusted in validation, which is possibly conducted under dif-
ferent conditions than those occurring during calibration. Al-
though the importance of model calibration is well
established, performance ratings can be relaxed if improper
calibration procedures are employed.

It is necessary to note that although proper model calibra-
tion is important in reducing error in model output, experi-
ence has shown that model simulation results may contain
substantial errors. Therefore, rather than provide a point esti-
mate of a given quantity of model output, it may be preferable
to provide an interval estimate with an associated probability
that the value of the quantity will be contained by the interval
(Haan et al., 1998). In other words, uncertainty analysis needs
to be included in model evaluations. Uncertainty analysis is
defined as the process of quantifying the level of confidence
in a given model simulation output based on: (1) the quality
and amount of measured data available, (2) the absence of
measured data due to the lack of monitoring in certain loca-
tions, (3) the lack of knowledge about some physical pro-
cesses and operational procedures, (4) the approximate
nature of the mathematical equations used to simulate pro-
cesses, and (5) the quality of the model sensitivity analysis
and calibration. Detailed model uncertainty analysis is be-
yond the scope of this research, but more model output uncer-
tainty information can be obtained from published literature.

Evaluation Time Step
Most of the literature reviewed used daily and/or monthly

time steps (Saleh et al., 2000; Santhi et al., 2001; Yuan et al.,
2001; Sands et al., 2003; Van Liew et al., 2003; Chu and Shir-
mohammadi,  2004; Saleh and Du, 2004; Singh et al., 2004;
Bracmort et al., 2006; Singh et al., 2005; Van Liew et al.,

2007), although a few used annual time steps (Gupta et al.,
1999; Shirmohammadi et al., 2001; Reyes et al., 2004), and
one used weekly time steps (Narasimhan et al., 2005). There-
fore, the time steps considered in this article are the daily and
monthly. Typically, model simulations are poorer for shorter
time steps than for longer time steps (e.g., daily versus
monthly or yearly) (Engel et al., 2007). For example, Yuan
et al. (2001) reported an R2 value of 0.5 for event comparison
of predicted and observed sediment yields, and an R2 value
of 0.7 for monthly comparison. The NSE values were 0.395
and 0.656 for daily and monthly, respectively, for
DRAINMOD-DUFLOW calibration, and 0.363 and 0.664
for daily and monthly, respectively, for DRAINMOD-W cal-
ibration (Fernandez et al., 2005). Similarly, the NSE values
were 0.536 and 0.870 for daily and monthly, respectively, for
DRAINMOD-DUFLOW validation, and 0.457 and 0.857 for
daily and monthly, respectively, for DRAINMOD-W valida-
tion (Fernandez et al., 2005). Additional research work that
supports the described findings includes that of Santhi et al.
(2001), Van Liew et al. (2003), and Van Liew et al. (2007) us-
ing SWAT. The performance ratings presented in table 4 for
RSR and NSE statistics are for a monthly time step; therefore,
they need to be modified appropriately. Generally, as the
evaluation time step increases, a stricter performance rating
is warranted.

Project Scope and Magnitude
The scope and magnitude of the modeling project also af-

fects model evaluation guidelines. The intended use of the
model is an indication of the seriousness of the potential con-
sequences or impacts of decisions made based on model re-
sults (U.S. EPA, 2002). For instance, stricter performance
rating requirements need to be set for projects that involve
potentially large consequences, such as congressional testi-
mony, development of new laws and regulations, or the sup-
port of litigation. More modest performance ratings would be
acceptable for technology assessment or “proof of principle,”
where no litigation or regulatory action is expected. Even
lower performance ratings will suffice if the model is used for
basic exploratory research requiring extremely fast turn-
around or high flexibility.

Finally, according to the U.S. EPA (2002), if model simu-
lation does not yield acceptable results based on predefined
performance ratings, this may indicate that: (1) conditions in
the calibration period were significantly different from those
in the validation period, (2) the model was inadequately or
improperly calibrated, (3) measured data were inaccurate,
(4) more detailed inputs are required, and/or (5) the model is
unable to adequately represent the watershed processes of in-
terest.

A CASE STUDY
PROJECT DESCRIPTION

As a component of the CEAP-WAS, the Soil and Water
Assessment Tool (SWAT2005; Arnold et al., 1998) was ap-
plied to the Leon River watershed in Texas. The watershed
drains into Lake Belton, which lies within Bell and Coryell
counties and provides flood control, water supply, and public
recreation.  The lake has a surface area of approximately
12,300 acres with a maximum depth of 124 feet. The total
conservation storage is 372,700 ac-ft. The Lake Belton wa-
tershed (Leon River) covers approximately 2.3 million acres
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within five counties in central Texas. The majority of the land
use in the watershed is pasture, hay, and brushy rangeland
(63%). Cropland comprises about 10% of the watershed area.
The northwestern (upper) half of the watershed contains nu-
merous animal feeding operations, mainly dairies. Currently,
there are approximately 60 permitted dairies and 40 smaller
dairies (not requiring permits), with approximately 70,000
total cows. The main goal of the study is to use SWAT2005
to predict the impact of land management on the watershed
over long periods of time, with special focus on waste man-
agement practices.

To accomplish this goal, SWAT2005, with its many input
parameters that describe physical, chemical, and biological
processes, required calibration for application in the study
watershed. Proper model calibration is important in hydro-
logic modeling studies to reduce uncertainty in model predic-
tions. For a general description of proper model calibration

procedures, refer to the previous discussion in the Additional
Considerations section.

MODEL EVALUATION RESULTS BASED ON THE DEVELOPED
GUIDELINES

When these model performance ratings were applied to
the SWAT2005 modeling in the Leon River (Lake Belton)
watershed, the following results were obtained (figs. 2 and 3,
table 5). Graphical results during calibration (fig. 2) and val-
idation (fig. 3) indicated adequate calibration and validation
over the range of streamflow, although the calibration results
showed a better match than the validation results. NSE values
for the monthly streamflow calibration and validation ranged
from 0.66 to 1.00. According to the model evaluation guide-
lines, SWAT2005 simulated the streamflow trends well to
very well, as shown by the statistical results, which are in
agreement with the graphical results. The RSR values ranged

Figure 2. Monthly discharge (CMS) calibration for the Leon River sub-basin 6 WS outlet.

Figure 3. Monthly discharge (CMS) validation for the Leon River sub-basin 13.
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Table 5. Results of SWAT2005 average monthly streamflow model output, Leon
River watershed, Texas, based on the developed model evaluation guidelines.

Sub-basin

Evaluation Statistic

NSE RSR PBIAS

Calibration Validation Calibration Validation Calibration Validation

6 1.00 (very good) 1.00 (very good) 0.03 (very good) 0.06 (very good) -2.86 (very good) -3.85(very good)
13 0.66 (good) 0.69 (good) 0.58 (good) 0.56 (good) -4.89 (very good) -29.04 (unsatisfactory)
21 0.81 (very good) 0.84 (very good) 0.43 (very good) 0.40 (very good) -3.62 (very good) 0.41 (very good)
36 0.93 (very good) 0.85 (very good) 0.26 (very good) 0.39 (very good) -0.28 (very good) -2.94 (very good)
44 1.00 (very good) 0.78 (very good) 0.06 (very good) 0.46 (very good) -1.58 (very good) 12.31 (good)
50 0.78 (very good) -- 0.46 (very good) -- -1.10 (very good) --
58 0.69 (very good) -- 0.55 (very good) -- 2.15 (very good) --

from 0.03 to 0.58 during both calibration and validation.
These values indicate that the model performance for stream-
flow residual variation ranged from good to very good. The
PBIAS values varied from −4.89% to 2.15% during calibra-
tion and from −29.04% to 12.31% during validation. The av-
erage magnitude of simulated monthly streamflow values
was within the very good range (PBIAS < ±10) for each sub-
basin during calibration (table 5). However, simulated values
fell within unsatisfactory, good, and very good ranges during
validation for various sub-basins. Aside from one indication
of unsatisfactory model performance, SWAT2005 simulation
of streamflow was “good” to “very good” in terms of trends
(NSE), residual variation (RSR), and average magnitude
(PBIAS). As apparent from this evaluation of the Leon River
watershed, situations might arise that generate conflicting
performance ratings for various watersheds and/or output
variables.

In situations with conflicting performance ratings, those
differences must be clearly described. For example, if simu-
lation for one output variable in one watershed produces un-
balanced performance ratings of “very good” for PBIAS,
“good” for NSE, and “satisfactory” for RSR, then the overall
performance should be described conservatively as “satisfac-
tory” for that one watershed and that one output variable.
However, it would be preferable to describe the performance
in simulation of average magnitudes (PBIAS) as “very
good,” in simulation of trends (NSE) as “good,” and in simu-
lation of residual variation (RSR) as “satisfactory.” Similarly,
if performance ratings differ for various watersheds and/or
output types, then those differences must be clearly de-
scribed.

SUMMARY AND CONCLUSIONS
Most research and application projects involving wa-

tershed simulation modeling utilize some type of predefined,
project-specific  model evaluation techniques to compare
simulated output with measured data. Previous research has
produced valuable comparative information on selected
model evaluation techniques; however, no comprehensive
standardization  is available that includes recently developed
statistics with corresponding performance ratings and appli-
cable guidelines for model evaluation. Thus, the present re-
search selected and recommended model evaluation
techniques (graphical and statistical), reviewed published
ranges of values and corresponding performance ratings for
the recommended statistics, and established guidelines for
model evaluation based on the review results and project-
specific considerations. These recommendations and discus-

sion apply to evaluation of model simulation related to
streamflow, sediments, and nutrients (N and P).

Based on previous published recommendations, a com-
bination of graphical techniques and dimensionless and error
index statistics should be used for model evaluation. In addi-
tion to hydrographs and percent exceedance probability
curves, the quantitative statistics NSE, PBIAS, and RSR
were recommended. Performance ratings for the recom-
mended statistics, for a monthly time step, are presented in
table 4. In general, model simulation can be judged as “satis-
factory” if NSE > 0.50 and RSR < 0.70, and if PBIAS ± 25%
for streamflow, PBIAS ± 55% for sediment, and PBIAS
± 70% for N and P for measured data of typical uncertainty.
These PBIAS ratings, however, should be adjusted if mea-
surement uncertainty is either very low or very high. As indi-
cated by these PBIAS ratings, it is important to consider
measured data uncertainty when using PBIAS to evaluate
watershed models. In addition, general guidelines for manual
calibration for flow, sediment, and nutrients were presented
(fig. 1). Additional considerations, such as single-event sim-
ulation, quality and quantity of measured data, model cal-
ibration procedure considerations, evaluation time step, and
project scope and magnitude, which affect these guidelines,
were also discussed. The guidelines presented should be ad-
justed when appropriate to reflect these considerations. To il-
lustrate the application of the developed model evaluation
guidelines, a case study was provided.

Finally, the recommended model evaluation statistics and
their respective performance ratings, and the step-by-step de-
scription of how they should be used, were presented together
to establish a platform for model evaluation. As new and im-
proved methods and information are developed, the recom-
mended guidelines should be updated to reflect these
developments.
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APPENDIX
Reported Values of NSE and PBIAS for Various Constituents

Table A-1. Daily and monthly surface runoff calibration and validation value ranges.[a]

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Warner Creek, Maryland - SWAT 
Chu and Shirmohammadi, 2004)

NSE -- 0.35 -- 0.77
PBIAS

Black Creek, Indiana - SWAT
(Bracmort et al., 2006)

NSE -- 0.62 to 0.80 -- 0.63 to 0.75
PBIAS

[a] In tables A-1 through A-9, a dash (--) indicates no value reported for the statistic used; a blank space indicates that the statistic was not used.

Table A-2. Daily and monthly sediment calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.81
PBIAS

Bosque River, Texas - SWAT
(Santhi et al., 2001)

NSE -- 0.69 to 0.80 -- 0.23 to 0.70
PBIAS

Bosque River, Texas - SWAT
(Saleh and Du, 2004)

NSE -2.50 0.83 -3.51 0.59
PBIAS

Bosque River, Texas - HSPF
(Saleh and Du, 2004)

NSE 0.11 0.72 0.23 0.88
PBIAS

Hellbranch Run, Ohio - HSPF
(Engelmann et al., 2002)[a]

NSE -- 0.49 -- -2.46
PBIAS

Black Creek, Indiana - SWAT
(Bracmort et al., 2006)

NSE -- 0.86 to 0.92 -- 0.68 to 0.75
PBIAS

[a] In Borah and Bera (2004).
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Table A-3. Daily and monthly organic N calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.78
PBIAS

Bosque River watershed, Texas - SWAT
(Santhi et al., 2001)

NSE -- 0.57 to 0.58 -- 0.43 to 0.73
PBIAS

Table A-4. Daily and monthly NO3−N calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.37
PBIAS

Plymouth, North Carolina - DRAINMOD-W
(Fernandez et al., 2005)

NSE 0.36 0.66 0.46 0.86
PBIAS

Plymouth, North Carolina - DRAINMOD-DUFLOW
(Fernandez et al., 2005)

NSE 0.40 0.66 0.54 0.87
PBIAS

Bosque River, Texas - SWAT
(Santhi et al., 2001)

NSE -- -0.08 to 0.59 -- 0.64 to 0.75
PBIAS

Table A-5. Daily and monthly total N (organic N + NO3−N) calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.86
PBIAS

Plymouth, North Carolina - DRAINWAT
(Amatya et al., 2004)

NSE -- -- 0.19 0.76
PBIAS

Table A-6. Daily and monthly PO4−P calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.94
PBIAS

Bosque River, Texas - SWAT
(Santhi et al., 2001)

NSE -- 0.53 to 0.59 -- 0.53 to 0.81
PBIAS

Black Creek, Indiana - SWAT
(Bracmort et al., 2006)

NSE -- 0.78 to 0.84 -- 0.51 to 0.74
PBIAS

Table A-7. Daily and monthly organic P calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.54
PBIAS

Bosque River, Texas - SWAT
(Santhi et al., 2001)

NSE -- 0.59 to 0.70 -- 0.39 to 0.72
PBIAS

Table A-8. Daily and monthly total P calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Black Creek, Indiana - SWAT
(Bracmort et al., 2006)

NSE -- 0.51 -- 0.37
PBIAS

Table A-9. Daily and monthly streamflow calibration and validation value ranges (continued).

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Bosque River, Texas - SWAT
(Saleh et al., 2000)

NSE -- -- -- 0.56
PBIAS

Eight watersheds in southwest Oklahoma - SWAT
(Van Liew et al., 2003)

NSE 0.56 to 0.58 0.66 to 0.79 -0.37 to 0.72 -1.05 to 0.89
PBIAS
(continued)
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Table A-9 (continued). Daily and monthly streamflow calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Eight watersheds in southwest Oklahoma - HSPF
(Van Liew et al., 2003)

NSE 0.64 to 0.72 0.74 to 0.82 -1.37 to 0.87 -3.35 to 0.92
PBIAS

Plymouth, North Carolina - DRAINMOD-W
(Fernandez et al., 2005)

NSE 0.83 0.85 0.87 0.93
PBIAS

Plymouth, North Carolina - DRAINMOD-DUFLOW
(Fernandez et al., 2005)

NSE 0.68 0.76 0.81 0.92
PBIAS

Bosque River, Texas - SWAT
(Santhi et al., 2001)

NSE -- 0.79 to 0.83 -- 0.62 to 0.87
PBIAS

Six watersheds in Texas - SWAT
(Narasimhan et al., 2005)[a]

NSE -- 0.52 to 0.90 -- 0.55 to 0.81
PBIAS

Bosque River, Texas - SWAT
(Saleh and Du, 2004)

NSE 0.17 0.50 0.62 0.78
PBIAS

Bosque River, Texas - HSPF
(Saleh and Du, 2004)

NSE 0.72 0.91 0.70 0.86
PBIAS

Plymouth, North Carolina - DRAINWAT
(Amatya et al., 2004)

NSE -- -- 0.71 to 0.84 0.85
PBIAS

Muscatatuck River, Indiana - SWAT
(Vazquez-Amábile and Engel, 2005)

NSE -0.23 to 0.28 0.59 to 0.80 -0.35 to 0.48 0.49 to 0.81
PBIAS

Warner Creek, Maryland - SWAT
(Chu and Shirmohammadi, 2004)

NSE -- 0.52 -- 0.63
PBIAS

Eight CRR-catchment test cases - XNJ (local simplex)
(Gan and Biftu, 1996)

NSE 0.89 to 0.94 -- 0.37 to 0.88 --
PBIAS -4.0 to 0.0 -- -16.0 to 34.0 --

Eight CRR-catchment test cases - NAM (SCE-UA)
(Gan and Biftu, 1996)

NSE 0.82 to 0.92 -- 0.41 to 0.88 --
PBIAS -16.7 to 15.5 -- -31.9 to 37.0 --

Eight CRR-catchment test cases - SMAR (SCE-UA)
(Gan and Biftu, 1996)

NSE 0.86 to 0.91 -- 0.86 to 0.91 --
PBIAS -20.9 to 12.0 -- -32.9 to 31.7 --

Eight CRR-catchment test cases - SMAR (local simplex)
(Gan and Biftu, 1996)

NSE 0.74 to 0.90 -- 0.00 to 0.85 --
PBIAS -6.0 to 0.0 -- -27.0 to 44.0 --

Eight CRR-catchment test cases - SMAR (local simplex)
(Gan and Biftu, 1996)

NSE 0.74 to 0.90 -- 0.00 to 0.85 --
PBIAS -6.0 to 0.0 -- -27.0 to 44.0 --

Eight CRR-catchment test cases - XNJ (SCE-UA)
(Gan and Biftu, 1996)

NSE 0.89 to 0.95 -- 0.45 to 0.88 --
PBIAS -13.9 to 24.4 -- -31.5 to 30.8 --

Eight CRR-catchment test cases - NAM (local simplex)
(Gan and Biftu, 1996)

NSE 0.81 to 0.92 -- 0.43 to 0.87 --
PBIAS -4.0 to 0.0 -- -16.0 to 44.0 --

Eight CRR-catchment test cases - SMA (SCE-UA)
(Gan and Biftu, 1996)

NSE 0.87 to 0.94 -- 0.31 to 0.89 --
PBIAS -7.6 to 1.3 -- -58.6 to 20.1 --

Eight CRR-catchment test cases - SMA (local simplex)
(Gan and Biftu, 1996)

NSE 0.85 to 0.93 -- 0.29 to 0.88 --
PBIAS -11.9 to 6.4 -- -54.8 to 47.2 --

Eight CRR-catchment test cases - SMA (local simplex)
(Gan and Biftu, 1996)

NSE 0.85 to 0.93 -- 0.29 to 0.88 --
PBIAS -11.9 to 6.4 -- -54.8 to 47.2 --

Eight CRR-catchment test cases - SMA (local simplex)
(Gan and Biftu, 1996)

NSE 0.85 to 0.93 -- 0.29 to 0.88 --
PBIAS -11.9 to 6.4 -- -54.8 to 47.2 --

Eight CRR-catchment test cases - SMA (local simplex)
(Gan and Biftu, 1996)

NSE 0.85 to 0.93 -- 0.29 to 0.88 --
PBIAS -11.9 to 6.4 -- -54.8 to 47.2 --

Iroquois River, Illinois and Indiana - HSPF
(Singh et al., 2004)

NSE 0.81 0.88 0.70 0.82
PBIAS

Iroquois River, Illinois and Indiana - SWAT
(Singh et al., 2004)

NSE 0.79 0.89 0.73 0.83
PBIAS

Ariel Creek, Pennsylvania - SWAT
(Peterson and Hamlett, 1998)[b]

NSE 0.04 0.14 -- --
PBIAS

Ali Efenti, Greece - SWAT
(Varanou et al., 2002)[b]

NSE 0.62 0.81 -- --
PBIAS

University of Kentucky Animal Research Center - SWAT
(Spruill et al., 2000)[b]

NSE 0.19 0.89 -0.04 0.58
PBIAS

Iroquois River, Illinois and Indiana - HSPF
(Singh et al., 2005)

NSE 0.81 0.88 0.69 to 0.71 0.80 to 0.87
PBIAS
(continued)
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Table A-9 (continued). Daily and monthly streamflow calibration and validation value ranges.

Watershed - Model
(Reference)

Calibration Value Ranges Validation Value Ranges

Statistic Daily Monthly Daily Monthly

Iroquois River, Illinois and Indiana - SWAT
(Singh et al., 2005)

NSE 0.79 0.88 0.70 to 0.83 0.80 to 0.93
PBIAS

Black Creek, Indiana - SWAT
(Bracmort et al., 2006)

NSE -- 0.73 to 0.84 -- 0.63 to 0.73
PBIAS

Five USDA-ARS experimental watersheds - SWAT
(Van Liew et al., 2007)

NSE 0.30 to 0.76 0.48 to 0.90 -1.81 to 0.68 -2.50 to 0.89
PBIAS 2.9 to -91.7 -- 2.7 to -155.6 --

[a] Weekly values.
[b] In Borah and Bera (2004).


