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ABSTRACT

Uncertainty estimates corresponding to measured hydrologic and water quality data can contribute to
improved monitoring design, decision-making, model application, and regulatory formulation. With
these benefits in mind, the Data Uncertainty Estimation Tool for Hydrology and Water Quality (DUET-H/
WQ) was developed from an existing uncertainty estimation framework for small watershed discharge,
sediment, and N and P data. Both the software and its framework-basis utilize the root mean square error
propagation methodology to provide uncertainty estimates instead of more rigorous approaches
requiring detailed statistical information, which is rarely available. DUET-H/WQ lists published uncer-
tainty information for data collection procedures to assist the user in assigning appropriate data-specific
uncertainty estimates and then calculates the uncertainty for individual discharge, concentration, and
load values. Results of DUET-H/WQ application in several studies indicated that substantial uncertainty
can be contributed by each procedural category (discharge measurement, sample collection, sample
preservation/storage, laboratory analysis, and data processing and management). For storm loads, the
uncertainty was typically least for discharge (+7-23%), greater for sediment (+16-27%) and dissolved N
and P (+14-31%) loads, and greater yet for total N and P (£18-36%). When these uncertainty estimates
for individual values were aggregated within study periods (i.e. total discharge, average concentration,
and total load), uncertainties followed the same pattern (Q < TSS < dissolved N and P < total N and P).
This rigorous demonstration of uncertainty in discharge and water quality data illustrates the importance
of uncertainty analysis and the need for appropriate tools. It is our hope that DUET-H/WQ contributes to
making uncertainty estimation a routine data collection and reporting procedure and thus enhances
environmental monitoring, modeling, and decision-making. Hydrologic and water quality data are too
important for scientists to continue to ignore the inherent uncertainty.

Published by Elsevier Ltd.

also available from Daren Harmel, 808 E. Blackland Rd., Temple, TX
76502, USA. Tel.: +1 254 770 6521, daren.harmel@ars.usda.gov.

A Beta version of DUET-H/WQ was used in all analyses pre-
sented. Bill Komar, programmer with AgriLife Research part of the
Texas A&M University System, completed the development in
December 2007. This and future revisions are available at no cost
online in an open source format at ftp://ftp.brc.tamus.edu/pub/
outgoing/bkomar/programs/. The software with the interface is
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DUET-H/WQ is written in Visual Basic and is distributed as an
installable Windows file that requires the Microsoft.NET 2.0
Framework with Service Pack 1.

1. Introduction

In spite of advanced modeling capabilities, water resource
decision-making still relies strongly on measured hydrologic and
water quality data (Silberstein, 2006), and understanding the
inherent data uncertainty is vital for appropriate assessment,
management, and modeling (Brown et al., 2005; Brouwer and De
Blois, 2008). First, optimal water quality monitoring can only be
achieved if measurement uncertainty and alternatives to reduce
uncertainty are understood and considered in project design and
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implementation (Beven, 2006a; Harmel et al.,, 2006b; Rode and
Suhr, 2007). Second, enhanced decision-making and stakeholder
understanding can only be fully realized if measurement uncer-
tainty is estimated and adequately communicated to other
scientists, modelers, public interest groups, regulators, and elected
officials (Collins et al., 2000; Bonta and Cleland, 2003; Reckhow,
2003; Nature, 2005; Beven, 2006a; Pappenberger and Beven,
2006). Similarly, analysis of uncertainty in measured data, which
drive model calibration and validation, improves model application
and enhances decisions based on modeling results (Reckhow, 1994;
Kavetski et al., 2002; Pappenberger and Beven, 2006; Beven,
2006b; Shirmohammadi et al., 2006; Harmel and Smith, 2007).

The typical data collection procedures (monitoring methods) for
discharge, sediment, and nutrient water quality data have been
classified into four categories: discharge measurement, sample
collection, sample preservation/storage, and laboratory analysis
(Harmel et al., 2006a). Typically, it is by procedures in these cate-
gories that uncertainty is introduced into discharge and water
quality data. Brief descriptions of uncertainty related to these
procedural categories related to small watersheds appear subse-
quently in this manuscript; for detailed descriptions see Harmel
etal. (2006a). These categories and descriptions are not meant to be
exhaustive (e.g. in situ water quality sensors are not included) but
to address common methods used in small watershed monitoring
projects. Alternatives to reduce uncertainty for each procedural
category were not presented but appear in Pelletier (1988), Kotlash
and Chessman (1998), USGS (1999), Jarvie et al. (2002), Meyer
(2002), Harmel et al. (2006a,b), and Rode and Suhr (2007). Rode
and Suhr (2007) also provide an excellent summary of uncertainty
in basin-scale water quality data. Throughout this manuscript,
“error” and “uncertainty” are used synonymously and are defined
as random variation affected by the appropriate use of accepted
procedures (Haan, 2002).

1.1. Uncertainty in discharge measurement

Many researchers have analyzed uncertainty associated with
discharge (flow) measurement, but uncertainty estimates are rarely
made and reported to data users. One exception is the US Geolog-
ical Survey (USGS) that does publish uncertainty estimates corre-
sponding to instantaneous discharge measurements and annual
station discharge records (Novak, 1985). For small watersheds,
discharge is commonly measured with a hydraulic control structure
(weir or flume), and thus uncertainty is introduced mainly by stage
(depth) measurement (Herschy, 1995). The velocity-area method is
also commonly used for instantaneous measurement or to establish
a stage-discharge relationship. With the velocity-area method,
uncertainty is introduced by stage and velocity measurements
typically conducted in vertical cross-section segments (Young,
1950; Carter and Anderson, 1963; Rantz et al., 1982; Pelletier, 1988;
Hipolito and Leoureiro, 1988; Sauer and Meyer, 1992). Continuous
discharge data are typically estimated from stage measurements
based on their relationship with discharge (Buchanan and Somers,
1976; Brakensiek et al., 1979; Kennedy, 1984; Carter and Davidian,
1989; Slade, 2004). The uncertainty in continuous stage measure-
ment is mainly determined by stage sensor accuracy, presence/
absence of a stilling well, and channel bed conditions (Pelletier,
1988; Sauer and Meyer, 1992). Uncertainty introduced by
translating continuous stage measurements into discharge is
determined to a large extent by the presence/absence of a hydraulic
control structure, the stability of the channel, and the range of
measured flows used to develop the relationship (Dickinson, 1967;
Pelletier, 1988; Sauer and Meyer, 1992; Herschy, 1995; Schmidt,
2002). In-stream velocity meters are also commonly used to
provide continuous discharge data based on measured velocities

and the cross-sectional flow area. The uncertainty of in-stream
discharge sensor data largely depends on equipment accuracy
relative to the entire cross-sectional flow area, depth-area based on
stage measurements, stability of the channel morphology, and
variability of water chemical and physical characteristics (McIntyre
and Marshall, 2008).

1.2. Uncertainty in sample collection

Until recently, relatively little information had been available on
uncertainty related to sample collection for the determination of
constituent concentrations. In small watersheds (roughly described
as <10,000 ha), manual grab samples and/or automated samples
can be used to characterize water quality. Uncertainty related to
baseflow water quality sampling is determined by the frequency of
collection, type of constituent, and choice of collection method,
whether manually integrated, manual grab, or automated (Martin
et al, 1992; Ging, 1999; USGS, 1999). Similarly, the uncertainty
introduced by manual and automated storm water sampling is
determined by constituent type, collection methodology, and
sampling frequency (Martin et al., 1992; Ging, 1999; USGS, 1999;
Robertson and Roerish, 1999; King and Harmel, 2003; Harmel et al.,
2003; Harmel and King, 2005; Miller et al., 2007; Rode and Suhr,
2007). In addition, the definition of storm occurrence as it relates to
the determination of sample collection timing also introduces
uncertainty in storm water data (Harmel et al., 2002).

1.3. Uncertainty in sample preservation/storage

Considerable research has established that nutrient forms and
concentrations can be altered during the interval between sample
collection and analysis and that water chemical and biochemical
characteristics affect the magnitude and rate of alteration (Fitz-
gerald and Faust, 1967; Johnson et al., 1975; Lambert et al., 1992;
Robards et al., 1994; Haygarth et al., 1995; Jarvie et al., 2002). The
increased use of automated samplers since the 1990s has magnified
the potential for substantial alterations because of the time delay
between sample collection and retrieval (Kotlash and Chessman,
1998). Therefore, quality assurance often focuses on sample pres-
ervation and storage procedures to minimize physical, chemical,
and biological transformation and thus reduces uncertainty. Pres-
ervation and storage procedures typically utilize cold, dark storage
environments and/or chemical preservatives; however, container
characteristics and filtration methodology can also influence post-
collection nutrient transformations (Henriksen, 1969; Ryden et al.,
1972; Latterell et al., 1974; Skjemstad and Reeve, 1978; Fishman
et al., 1986; Maher and Woo, 1998; Kotlash and Chessman, 1998;
Haygarth and Edwards, 2000; Jarvie et al., 2002).

1.4. Uncertainty in laboratory analysis

The uncertainty introduced in water quality data by various
analytical procedures to determine constituent concentrations also
receives considerable quality assurance focus to reduce uncertainty
(Ramsey, 1998). Recent efforts such as the North American Profi-
ciency Testing program have contributed valuable data and insight
into analytical uncertainty by quantifying differences in results
across laboratory techniques and locations. The main sources of
laboratory uncertainty are associated with sample handling,
chemical preparation, analytical method and equipment, and cali-
bration standards and reference materials (Robards et al., 1994;
Gordon et al., 2000; Ludtke et al., 2000; Mercurio et al., 2002; Jarvie
et al,, 2002; CAEAL, 2003). The relative uncertainty associated with
sediment concentrations is typically low because only basic filtra-
tion and/or mass determination are necessary. The uncertainty
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introduced by nutrient analysis is typically greater than for sedi-
ments because of added steps and increased analytical complexity.
Relative uncertainties, which are typically inversely related to
ambient concentrations, are generally least for sediment, more for
total N, total P, and NOs3-N, and greatest for PO4-P and NHy4-N
(Horwitz et al., 1980; Meyer, 2002; Harmel et al., 2006a).

1.5. Development and initial application of the uncertainty
estimation framework

According to Beven (2006a), the first step in advancing hydro-
logic and water quality science related to data uncertainty is
determining realistic methods of representing that uncertainty. The
value of uncertainty information, as well as the scientific integrity
of communicating that information, prompted Harmel et al.
(2006a) to make this initial step by developing a framework for
quantifying the uncertainty in measured discharge and sediment,
N, and P load and concentration data collected at the field and small
watershed scale.

The framework foundation consists of: 1) establishment of
categories within which to classify monitoring procedures (dis-
cussed previously) and 2) presentation of an accepted method for
estimating cumulative uncertainty in individual (single) measured
values resulting from component uncertainties within procedural
categories (Harmel et al., 2006a). The framework utilizes the root
mean square error (RMSE) method to propagate uncertainty from
each component to estimate the cumulative uncertainty in indi-
vidual discharge, concentration, and load values.

The framework was initially applied to estimate the cumulative
uncertainty for a variety of arbitrary “data quality” scenarios
(Harmel et al., 2006a). While several researchers (e.g. Gentry et al.,
2007; Keener et al., 2007; McCarthy et al., 2008; Quansah et al.,
2008) have accepted and applied this framework, it can be
cumbersome to apply repeatedly by hand to data sets with multiple
values for multiple parameters. Therefore, the objective of this
manuscript was to demonstrate the application of the Data
Uncertainty Estimation Tool for Hydrology and Water Quality
(DUET-H/WQ), which was based on this established framework.
The utility and limitations of DUET-H/WQ were explored by its
application in several case studies with real-world monitoring data.

2. Method and software description
2.1. DUET-H/WQ development

DUET-H/WQ was designed to be a user-friendly application of
the uncertainty estimation framework developed by Harmel et al.
(2006a). Both DUET-H/WQ and its framework-basis were developed
to estimate uncertainty in individual discharge, concentration, and
load values, which are typically collected periodically (e.g. weekly),
continually (e.g. hourly), or as storm event totals. It should be noted
that load values are not measured directly but are calculated as the
product of incremental discharge volumes and corresponding
concentrations. Both DUET-H/WQ and its framework-basis focus on
measured discharge, sediment, and N and P (dissolved and partic-
ulate) data collected at the small watershed scale.

2.1.1. Data processing and management procedural category

The first step in developing DUET-H/WQ was adding a proce-
dural category “data processing and management” to the Harmel
et al. (2006a) framework. The original procedural categories
focused on sampling uncertainty resulting from random variation
from the actual value and assumed appropriate use of accepted
procedures; therefore, uncertainty contributed by equipment
malfunction or personnel mistakes was not included. The potential

importance of uncertainty due to missing or incorrect values later
became apparent, and the data processing and management
procedural category was added. This allowed quantitative esti-
mates for uncertainty contributed by missing and/or incorrect data
to be included in cumulative uncertainty estimates.

2.1.2. RMSE propagation method

The foundational mathematical component of the software is
the RMSE propagation method (Topping, 1972). The RMSE method
was selected based on its simplicity, which was important to broad-
scale application, and on its acceptance and previous application as
a valid error propagation methodology in hydrologic and water
quality science. The RMSE method, which formed the mathematical
basis of the uncertainty estimation framework of Harmel et al.
(2006a), is used by USGS for uncertainty estimation in individual
discharge measurements (Sauer and Meyer, 1992) and has been
applied in hydrologic and water quality uncertainty analyses by
Cuadros-Rodriquez et al. (2002), Cooper (2002), and Allmendinger
et al. (2007).

The RMSE method estimates the “most probable value” of the
cumulative or combined error by propagating the error from each
procedure (Topping, 1972). The resulting cumulative probable error,
hereby called uncertainty, is defined as the square root of the sum
of the squares of the maximum values of the separate errors. This
probable error estimate is often reported with, or instead of, the
maximum error, which is the simple sum of the maximum values of
component errors. Thus in DUET-H/WQ, the maximum errors for
each step (or source of uncertainty) within each procedural cate-
gory (Table 1) are propagated to estimate the cumulated probable
uncertainty in each measured discharge, concentration, or load
value (Eq. (1)). Whereas errors were assumed to represent the 0.68
significance level (1 standard deviation for the normal distribution)
by Sauer and Meyer (1992), the 0.9999 significance level (3.9
standard deviations) was assumed in the present research based on
Harmel and Smith (2007).

The RMSE calculation, when applied to estimate the uncertainty
of individual measured values, assumes that uncertainty intro-
duced by each procedure is symmetrical about the measured value
and thus bi-directional with equal likelihood of over- and under-
estimation (Topping, 1972). Although little relevant information is
available to support or refute this assumption, it is a reasonable
expectation for most discharge and water quality data. A note-
worthy exception is sediment concentration measured from
a single location in the cross-section, since these data tend to be
biased due to vertical stratification.

Table 1
Data collection procedures (sources of uncertainty) in typical monitoring projects.

Discharge measurement (Q)
Individual discharge measurement

Sample preservation/storage (PS)

Duration from sample collection until
retrieval

Sample preservation/storage prior to
retrieval

Duration from sample retrieval until
analysis

Sample preservation/storage prior to
analysis

Continuous discharge measurement
Continuous stage measurement

Effect of streambed condition

Sample collection (C)
Sample collection method
Sampling frequency (interval)
Discrete or composites sampling

Minimum storm threshold (storm
sampling only)

Data processing and management (DPM)
Missing data
Incorrect values

Laboratory analysis (A)

Quality of standards

Pre-analytical processing

Standard relationship to determine
concentration

Accuracy of analytical procedure/
equipment
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EP = \/Z<E5+E%+EI%S+E3\+EIZJPM> (1)

where EP is the cumulative probable error or uncertainty for
individual measured values (+ %), Eq = uncertainty in discharge
measurement (& %), Ec = uncertainty in sample collection (+ %),
Eps = uncertainty in sample preservation/storage (£ %), Ex =
uncertainty in laboratory analysis (& %), and Eppyy = uncertainty in
data processing and management (+ %).

The Topping (1972) method also assumes that the uncertainties
for various procedures are independent (not that measured values
are uncorrelated, as discharge and concentration values are often
correlated especially in large rivers). Literature on this subject is
notably absent; however, several publications present or imply
relevant information. Sauer and Meyer (1992) provide an in-depth
discussion of procedures necessary to make individual discharge
measurements and imply that procedural uncertainties are
uncorrelated. Cuadros-Rodriquez et al. (2002) also imply lack of
correlation between procedural steps in pesticide analytical
procedures. Kotlash and Chessman (1998) confirm that uncer-
tainties in nutrient analysis procedures are related to sample
concentrations, but the authors do not state or imply any correla-
tion between procedural uncertainties. Thus, in lieu of relevant
published correlation data, uncertainties for flow and concentra-
tion measurement procedures are assumed to be uncorrelated in
the present application. It should be noted, however, that addi-
tional research is needed to enhance scientific understanding and
provide relevant information on hydrologic and water quality
measurement uncertainty.

The RMSE method is certainly not the only viable alternative to
estimate cumulative uncertainty for individual values. More
complex statistical methods could also be applied, but their
application requires information related to the selection of appro-
priate uncertainty distributions and corresponding distributional
parameters for each procedure. Thus, since relevant distributional
information is limited, unsubstantiated assumptions would be
necessary for more complex uncertainty propagation. While it is
important for the software to be simple and user-friendly in its
initial application (especially in the current environment where
uncertainty analyses are rarely conducted and relevant information
is limited), future versions can include more complex statistical
methods and thus better represent potential serial correlation,
asymmetrical distributions, and value-uncertainty correlation.

2.2. DUET-H/WQ application

The first step in applying DUET-H/WQ to estimate the uncertainty
for individual discharge, concentration, and load values is to select
the procedures utilized to determine that value. To accomplish this,
the user selects the appropriate procedures used and/or monitoring
conditions encountered from the appropriate DUET-H/WQ look-up
tables for the discharge measurement, sample collection, sample
preservation/storage, and laboratory analysis procedural categories
(Fig.1a-d).For each procedural category,a DUET-H/WQ look-up table
lists the common procedures utilized and monitoring conditions
encountered along with published uncertainty estimates. These
tables are based on Harmel et al. (2006a), which provides a detailed
description of data collection procedures and associated uncer-
tainties within each procedural category. Then, the user selects an
uncertainty estimate based on published data displayed by the
software (Fig. 1a-d). The user can adjust these uncertainty estimates
based on project-specific information and/or professional experi-
ence. DUET-H/WQ then calculates the uncertainty introduced by
each procedural category and allows the user to input the uncertainty
contributed by project-specific data processing and management

issues (Fig. 1e). Finally, DUET-H/WQ calculates the cumulative
probable uncertainty for individual discharge, concentration, or load
values (Eq. (1)). The user can choose to apply that same uncertainty
estimate to other data collected with the same procedure and under
similar conditions or to repeat the procedure for other measured
values to account for relationships between data characteristics
(such as magnitude) and measurement uncertainty. In situations
where little/no information is available on the procedures used and
conditions encountered, the software also gives the user the choice of
using default uncertainty estimates based on Harmel et al. (2006a).

2.2.1. Issues related to DUET-H/WQ application

In applying DUET-H/WQ, several important issues (e.g. user-
subjectivity and temporal/spatial variability) should be kept in
mind. The process by which users determine a reasonable uncer-
tainty estimate for each procedure is quite subjective because of the
considerable variability of published uncertainty information as
affected by study design, collection methods, and monitoring
conditions. In the face of this subjectivity, users should strive to
make the most accurate uncertainty estimate possible for each data
collection procedure. The benefits of uncertainty estimates corre-
sponding to measured data cannot be fully achieved if uncertainty
is purposefully under-estimated in an attempt to make data appear
to be “better” or less uncertain. As the subsequent results show,
even data collected with concerted quality assurance can have
appreciable uncertainty.

DUET-H/WQ does not include all sources of uncertainty (e.g.
uncertainty contributed by spatial and temporal variability). Such
uncertainty sources were excluded to maintain a focus on uncer-
tainty estimation for individual measured values. DUET-H/WQ
does, however, provide necessary inputs, specifically measurement
uncertainty, for comprehensive uncertainty analyses conducted
with watershed models or other geospatial-statistical tools.

3. Description of case studies
3.1. Measured data sets

The uncertainty estimation framework was initially applied to
arbitrary best case, worst case, and typical scenarios in Harmel et al.
(2006a). While those uncertainty estimated are reasonable in the
absence of project-specific information, it was also important to
apply the software to real-world monitoring data to demonstrate
its ability to quantify project-specific data uncertainty. Thus, DUET-
H/WQ was applied to measured data from small watersheds in
Texas (Riesel, Hamilton, and Austin), Indiana (Waterloo), and Ohio
(Centerburg). Studies with a wide range of monitoring conditions
(e.g. hydrologic setting, land use, and watershed size, as described
in Table 2) and field and laboratory techniques were selected to
demonstrate the software’s broad applicability.

3.1.1. Riesel, Texas

The Riesel, Texas, sites are field-scale (Y8) and farm-scale (Y2)
watersheds characterized by ephemeral to intermittent well-mixed
flow conditions. In 2004-2006, flow and storm water quality data
were collected with an ISCO 6700 automated sampler and 730
bubbler module (Teledyne ISCO, Inc., Lincoln, Nebraska). Storm
water samples were collected with a single-bottle, composite, flow-
interval (1.32 mm) sampling strategy. Each of these sites utilizes
a combination of Columbus shallow notch weir and Parshall flume
structure with well-established, stable stage-discharge relation-
ship. Collected samples were not preserved but were retrieved from
the field within 24 h of storm completion. Total suspended solid
(TSS) concentrations were determined by mass after drying for 24 h
at 110 °C. NOs-N and POg4-P concentrations were determined with
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Fig. 1. Application of DUET-H/WQ to the measured total P load for site ALG in the May 9, 2004 storm event; a) discharge measurement uncertainty, b) sample collection uncertainty,
c) sample preservation/storage uncertainty, d) laboratory analysis uncertainty, and e) cumulative uncertainty in the measured load.



R.D. Harmel et al. / Environmental Modelling & Software 24 (2009) 832-842 837

Table 2

Watershed conditions and measured storm discharge with cumulative probable uncertainty estimates for discharge totals within study periods.

Site name (location) Area (ha) Land use Monitoring period (s) Measured discharge Storm events (1)
Y8 (Riesel, Texas) 8.4 Agricultural (corn) Aug 2004-]Jul 2005 163 mm (+8%) 6
Aug 2005-]Jul 2006 124 mm (+10%) 4
Y2 (Riesel, Texas) 53.4 Mixed agricultural Aug 2004-]Jul 2005 225 mm (+7%) 9
Mustang Creek (Hamilton, Texas) 5506 Mixed agricultural Jan 2005-Dec 2005 95 mm (+14%) 6
AS1 (Waterloo, Indiana) 2.2 Agricultural (corn - tile drained) Apr 2004-Nov 2004 30 mm (£5%) 13
CME (Waterloo, Indiana) 373 Mixed agricultural (tile drained), forest Apr 2005-Nov 2005 3 mm (£19%) 5
Apr 2006-Nov 2006 104 mm (£5%) 16
ALG (Waterloo, Indiana) 2228 Mixed agricultural (tile drained), forest Apr 2004-Nov 2004 107 mm (+7%) 14
S2 (Austin, Texas) 66.5 Mixed urban (golf course, airport, residential) Jan 2000-Dec 2000 291 mm (£5%) 26
D1 (Centerburg, Ohio) 428 Mixed agricultural, forest Jan 2006-Dec 2006 396 mm (42%) 32

a 2003 OI Analytical, Flow IV, rapid flow colorimetric analyzer (OI
Analytical, College Station, Texas). The N and P content of sediment
was determined by a semimicro-Kjeldahl digestion procedure.

3.1.2. Hamilton, Texas

The Mustang Creek site near Hamilton, Texas, is located at the
outlet of a small rural watershed and is characterized by inter-
mittent flow conditions. The site has a low water dam (~10 m
wide), which served as a hydraulic control. In 2005, storm water
samples were collected with an ISCO 6700 automated sampler
(Teledyne ISCO, Inc., Lincoln, Nebraska) and a 24-bottle, discrete,
flow-interval (2.54 mm) sampling strategy. Continuous stage
measurements were made with a 730 bubbler module and trans-
lated into flow measurements with a stage-discharge relationship
established from a series of flow and stage measurements.
Collected samples were not preserved in the field but were
retrieved from the field within 24 h of storm completion. TSS
concentrations were determined by mass after drying for 18-24 h
at 116 °C. NO3-N and PO4-P concentrations were determined with
a 2003 OI Analytical, Flow IV, rapid flow colorimetric analyzer (OI
Analytical, College Station, Texas). The N and P content of sediment
was determined by a semimicro-Kjeldahl digestion procedure.

3.1.3. Austin, Texas

The Austin, Texas, site (S2) is located on a small urban watershed
with perennial flow contributed by irrigation return flow. In 2000,
storm water samples and corresponding discharge data were
collected with an ISCO 6700 automated sampler and 730 bubbler
module (Teledyne ISCO, Inc., Lincoln, Nebraska) with a 24-bottle,
composite, variable time-interval (5-60 min) sampling strategy.
Collected samples were not preserved but were iced and acidified
upon retrieval within 24 h of storm completion. The samples were
analyzed for NO3-N and PO4-P concentrations with a Technicon
Autoanalyzer and methods published by Technicon Industrial
Systems (1973, 1976).

3.1.4. Waterloo, Indiana

Flow and storm water quality data were collected from 2004 to
2006 for three sites near Waterloo, Indiana. At the ephemeral field-
scale site (AS1), a drop-box weir (~2.5 m) hydraulic control was
installed, and the associated stage—discharge relationship was used
to estimate flow. At the larger-scale, perennial flow sites (CME, ALG)
in drainage canals (~2 m wide), flow was estimated with an
established stage—discharge relationship prior to 2006 and with an
ISCO 2150 area-velocity meter (Teledyne ISCO, Inc., Lincoln,
Nebraska) in 2006. Aquatic vegetation growth and die-off did
contribute to uncertainty in measured discharge at sites CME and
ALG. At each site, storm water samples were collected with an ISCO
6700 automated sampler (Teledyne ISCO, Inc., Lincoln, Nebraska)
and a 24-bottle, time-interval (30 min) sampling strategy with three
samples composited in each bottle. Storm samples were retrieved
within 24 h. At all sites, samples were stored in automatic chillers

prior to retrieval. Samples were split for dissolved or total nutrient
analysis and frozen prior to analysis. For AS1, TSS concentrations
were determined by mass after drying for 24 h at 110 °C. For all sites,
filtered samples were analyzed for dissolved NO3-N and PO4-P
concentrations with USEPA methods 353.1 and 365.2 (USEPA, 1983).
Digested samples (including water and sediment) were analyzed for
Total Kjeldahl N and P by USEPA methods 351.2 and 365.4 (USEPA,
1983) after mercuric sulfate digestion of the unfiltered samples. All
analyses were conducted colorimetrically with a KoneLab Aqua-
Chem20 (EST Analytical, Medina, Ohio).

3.1.5. Centerburg, Ohio

In 2006, flow along with storm and baseflow water quality data
were collected at site D1 on the headwaters of Sugar Creek near
Centerburg, Ohio. A Parshall flume (2.44 m) control structure was
installed to improve flow measurement on this perennial flow site.
Water samples were collected continuously with an ISCO 6712
automated sampler programmed with a flow-interval (1.0 mm)
sampling strategy. Samples were composited four per bottle by the
sampler and composited weekly in the lab. Continuous stage
measurements were made with an ISCO 4230 Bubbler Flow Meter.
In addition, an ISCO 2150 Area-Velocity sensor (Teledyne ISCO, Inc.,
Lincoln, Nebraska) was used to collect measure velocity and
provide a secondary stage measurement. Samples were refriger-
ated in the field until retrieval. Following collection, all samples
were handled according to USEPA methods 353.3 and 365.1 for N
and P analysis, respectively (USEPA, 1983). Samples were stored
below 4 °C and analyzed within 28 days. Samples were vacuum
filtered through a 0.45 um pore diameter membrane filter for
analysis of dissolved nutrients. Concentrations of NO3 + NO»-N and
PO4-P were determined colorimetrically by flow injection analysis
using a Lachat Instruments QuikChem 8000 FIA Automated Ion
Analyzer (Hach Company, Loveland, Colorado). NO3 + NO,-N was
determined by application of the copperized-cadmium reduction,
and PO4-P was determined by the ascorbic acid reduction method
(Parsons et al., 1984). Total N and total P analyses were performed in
combination on unfiltered samples following alkaline persulfate
oxidation (Koroleff, 1983) with subsequent determination of NO3-N
and POg4-P.

3.2. Uncertainty estimation for individual storm values

For each of ten case study data sets, DUET-H/WQ was used to
estimate the uncertainty for each component in each procedural
category and to estimate the cumulative uncertainty for individual
measured storm event values. To compare procedural categories, the
uncertainty introduced by each category was determined for indi-
vidual discharge (n = 131) and concentration (n = 510) values
measured in 131 storm events. To compare constituent types, the
cumulative uncertainty for individual TSS, NOs-N, PO4-P, total N, and
total P concentrations and loads were determined for each event.
Because of the large number of measurements and corresponding
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uncertainty estimates (n > 1150), results for the total P load
measured from site ALG near Waterloo, Indiana, for the May 9, 2004
storm event were presented as an example (Fig. 1a-e).

3.3. Uncertainty estimation for aggregated data

Since aggregated data (e.g. weekly, monthly, annual, or study
period) are typically reported instead of individual values, it was
also important to estimate the uncertainty in aggregated data.

Another common error propagation method for determining
uncertainty in a sum of values (Topping, 1972) was utilized to
estimate the uncertainty in total flow and load data within study
periods (Eq. (2)). The same equation is also valid for determination
of uncertainty in an average; therefore, it was used to estimate the
uncertainty in the average concentration values for each study
period. The uncertainties for aggregated values were estimated by
hand not with DUET-H/WQ because of its focus on individual
values; however, future versions might include uncertainty esti-
mation methods for both individual and aggregated values.

where EPyq = cumulative probable error (& %) for the aggregated
(sum or average) of n measured values, n = number of measured
values with corresponding uncertainty estimates, x; = ith measured
value, and EP; = cumulative probable error (+ %) for ith measured
value.

4. Results and discussion
4.1. Uncertainty estimation for individual values using DUET-H/WQ

4.1.1. Comparison of procedural categories

To compare procedural categories, the uncertainties introduced
by each category were determined for individual storm discharge
and concentration values. Fig. 2 presents these results grouped
across all sites and by constituent type with dissolved N and P and
total N and P further grouped, since little difference occurred
between dissolved NO3-N and PO4-P or between total N and P. The
uncertainties in discharge measurements for storm events ranged
from 7 to 27% with a median of 14% (Fig. 2), which were similar to
estimates of 6% by Keener et al. (2007) and 11-27% by Cooper
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Fig. 2. Uncertainty introduced into storm event discharge and constituent concen-
tration data by the five procedural categories (Q - discharge measurement; C - sample
collection; PS - sample preservation/storage; A - laboratory analysis; DPM - data
processing and management).

(2002). Since discharge measurement can contribute considerable
uncertainty, accurate measurements are important to correctly
quantify this fundamental driver of constituent flux.

Although the uncertainty in sample collection is often ignored, it
can be the dominant source in environmental investigations
(Ramsey, 1998). This was certainly the case for sediment and total N
and P sample collection in the present study (Fig. 2). Collection of
representative sediment and total N and P samples is quite difficult
because streams can have substantial cross-sectional and vertical
gradients in particulate-associated concentrations. In contrast,
collection of dissolved N and P samples is quite easy since these
constituents are typically uniformly distributed within the channel
(Martin et al., 1992; Ging, 1999; Rode and Suhr, 2007). This differ-
ence was exemplified by greater sample collection uncertainties for
sediment and total N and P concentrations, which ranged from 12
to 26%, than for dissolved NO3-N and PO4-P concentrations, which
ranged from 6 to 17% (Fig. 2).

The uncertainty contributed by sample preservation/storage
regularly receives considerable attention in quality assurance
efforts to reduce uncertainty in water quality data (Lambert et al.,
1992; Kotlash and Chessman, 1998; Jarvie et al., 2002). Results of
the present study justify this attention in storm water sampling. For
sediment concentration determination, sample preservation and
storage are irrelevant because little post-collection transformation
is possible. In contrast, uncertainties contributed by sample pres-
ervation/storage ranged from 6 to 22% for dissolved NO3-N and
PO4-P concentrations and from 6 to 27% for total N and P concen-
trations (Fig. 2).

Similar to sample preservation/storage, laboratory analysis can
be an important contributor to uncertainty in measured N and P
concentrations (Jarvie et al., 2002; Meyer, 2002). For storm events,
laboratory analysis introduced little uncertainty (<8%) in sediment
concentrations due to relatively simple analytical procedures but
often introduced considerable uncertainty in N and P concentra-
tions (Fig. 2). Whereas little difference occurred between the
uncertainty contributed by sample collection and sample preser-
vation/storage in dissolved and total N and P concentrations, an
important difference occurred for laboratory analysis. Although
laboratory analysis uncertainty was typically similar for dissolved
NOs-N and POg4-P concentrations (range = 6-21%) and for total N
and P (range = 6-15%), uncertainty increased to 23% for one event
with very low total P concentrations (<0.05 mg/l). Kotlash and
Chessman (1998) noted this influence on reference stream data
with very low nutrient concentrations, which are sensitive to small
absolute errors and result in high relative errors.

The data processing and management procedural category,
which accounts for processing mistakes and missing values, was
quite variable in these case studies (Fig. 2). The data processing and
management activities that introduced uncertainty in measured
data included sampler failure during portions of storm events,
misplaced split subsamples, inadequate sample volume, inade-
quate sediment sample mass to determine associated nutrients,
and separation of storm events and baseflow; all of which are
common problems in monitoring projects. Data processing and
management typically introduced <5% uncertainty, but missing
and incorrect data did introduce 10-100% uncertainty in several
cases (Fig. 2). The potential for high uncertainty in these cases
emphasizes the importance of frequent preventative maintenance
and operator training to minimize mistakes and missing values.

4.1.2. Comparison of constituent types

To compare constituent types, the cumulative uncertainties in
concentrations and loads were determined for individual storms.
Figs. 3 and 4 present these results grouped across all sites. For
individual TSS values, the uncertainties in measured storm
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concentrations ranged from 12 to 26% with a median of 18% (Fig. 3).
Sediment load uncertainties ranged from 15 to 35% with a median
of 20% (Fig. 4), which are similar to the 35% uncertainty estimated
for sediment volume by Allmendinger et al. (2007) and the average
load uncertainty of 18% reported by Harmel et al. (2006a). No
sampler malfunction occurred during the study period for sites
with TSS data, but uncertainty would have increased substantially
for a few values (i.e. ~100% for other constituents as shown in Figs.
3 and 4) if samples had been missed. The uncertainties in TSS data
were typically less than in other constituents because of limited
post-collection transformation, simpler analytical procedures, and
relatively high concentration values. It should be kept in mind,
however, that only half of the measured data sets contained TSS
data.

As stated in the previous discussion of procedural categories,
little difference in uncertainty was evident between dissolved NO3-
N and PO4-P (Figs. 3 and 4). The uncertainties in NO3-N concen-
trations ranged from 13 to 102% (median = 17%) and in PO4-P
concentrations ranged from 13 to 103% (median = 19%). Load
uncertainties ranged from 14 to 103% (median = 22%) for NO3-N
and from 14 to 104% (median = 23%) for PO4-P. Using the uncer-
tainty estimation framework (RMSE method), Keener et al. (2007)
estimated uncertainty to be 27% for PO4-P concentrations and 28%
for PO4-P loads, and Gentry et al. (2007) estimated uncertainty to
be <10% for P loads, Similarly, Harmel et al. (2006a) estimated load
uncertainties to average 17% for NOs-N loads and 23% for dissolved
P loads. The occasional high uncertainty estimates (~100%) in the
present study resulted from extreme high flows and/or missing
samples. The uncertainties in dissolved NO3-N and PO4-P data were
typically greater than in TSS data in spite of uniform concentration
distributions because of post-collection transformation potential,
more complex analytical procedures, and lower concentration
values.

Similar to dissolved NO3-N and POg4-P, little difference in
uncertainty occurred between total N and total P (Figs. 3 and 4).
Concentration uncertainties ranged from 14 to 104%
(median = 23%) for total N and from 16 to 104% (median = 24%) for
total P. Load uncertainties ranged from 15 to 105% (median = 25%)
for total N and from 17 to 105% (median = 27%) for total P. The
occasional high uncertainties again resulted from extreme high
flows and/or missing samples. The uncertainties in total N and P
data were typically greater than in TSS data because of more
complex analytical procedures. Total N and P uncertainties were
also greater than for dissolved N and P because of increased diffi-
culty in collecting representative particulate samples and added

goth . .
100 A 75th ° *
. median
9 80 - I mean
i o5th
> 60 - 10"
_E e outlier . .
©
H
g 40 A
L]
= . . R . . °
20 ém +m
7
0 T T T T T T
Q TSS NO,;-N PO,-P Tot. N Tot. P

Fig. 3. Uncertainty in individual storm concentrations plotted with storm discharge
uncertainty.
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Fig. 4. Uncertainty in individual storm loads plotted with storm event discharge
uncertainty.

analytical steps when total N and P were determined by summing
dissolved and particulate fractions.

While the typical pattern of uncertainty across constituents
(Q < TSS < dissolved N and P < total N and P) is important, the
consistency of uncertainties across widely varying watershed
conditions is equally noteworthy. Across all watersheds, the 10th
and 90th percentiles for uncertainty in measured storm discharge
were 7-23%; in concentrations were 12-22% for TSS, 13-24% for
dissolved N and P, and 16-28% for total N and P; and in loads were
16-27% for TSS, 14-31% for dissolved N and P, and 18-36% for total N
and P. Since no complete error propagation results have been
previously published for real-world data, these results provide
initial uncertainty estimates for field staff, modelers, stakeholders,
and regulators to use in data analysis and decision-making.

It is important to note that the uncertainty of loads was always
greater than or equal to the uncertainty in corresponding concen-
trations. Compared to concentration uncertainties, which are not
affected by discharge uncertainty, load uncertainties averaged 21%
more for TSS, 23% more for dissolved N, 19% more for dissolved P,
13% more for total N, and 12% more for total P. This increase occurs
when loads are calculated as the product of discharge and
concentration (as in the present study), since both discharge and
concentration determinations contribute uncertainty. It would not
be the case when load and flow data are reported without
concentration data, and thus concentration would have to be esti-
mated by dividing the load by the flow.

4.2. Uncertainty estimation for aggregated data

In addition to uncertainties for individual values, the uncer-
tainties in total discharges, total loads, and average concentrations
aggregated within study periods were also estimated and pre-
sented in Tables 2-4. The uncertainties in aggregated totals ranged
from 2 to 19% for discharge, 10-27% for TSS loads, 5-30% for NO3-N
and POg4-P loads, and 6-32% for total N and total P loads. The
uncertainties in average concentrations ranged from 5 to 11% for
TSS, from 3 to 13% for NO3-N and PO4-P, and from 4 to 13% for total
N and total P. This same pattern of increasing uncertainty
(Q < TSS < dissolved N and P < total N and P) was observed in
individually measured values. Note that when using equation (2) to
estimate relative uncertainties for aggregated values (i.e. &= % for
sums and averages in the present application), uncertainties are
smaller than for individual values. The opposite would have been
true (aggregated > individual) if the absolute uncertainties (+mgjl
or +kg/ha) had been considered.
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Table 3

Constituent loads with cumulative probable uncertainty estimates for load totals within study periods.

Site (time period) TSS NO3-N PO4-P Total N¢ Total P?

Y8 (Aug 2004-Jul 2005) 1385 kg/ha (+10%) 13.6 kg/ha (+£13%) 1.6 kg/ha (£16%) 16.4 kg/ha (£11%) 2.6 kg/ha (£11%)
Y8 (Aug 2005-]Jul 2006) 1436 kg/ha (+£21%) 10.2 kg/ha (+14%) 0.2 kg/ha (£13%) 12.8 kg/ha (£12%) 0.8 kg/ha (£17%)
Y2 (Aug 2004-Jul 2005) 627 kg/ha (+10%) 6.1 kg/ha (+12%) 0.8 kg/ha (+14%) 7.5 kg/ha (+10%) 1.1 kg/ha (+10%)

Mustang Creek (Jan 2005-Dec 2005) 550 kg/ha (£27%)
AS1 (Apr 2004-Nov 2004) 716 kg/ha (+11%)
CME (Apr 2005-Nov 2005) na
CME (Apr 2006-Nov 2006) na
ALG (Apr 2004-Nov 2004) na
S2 (Jan 2000-Dec 2000) na
D1 (Jan 2006-Dec 2006) na

0.3 kg/ha (£13%)
2.7 kg/ha (+£12%)

<0.05 kg/ha (£30%)

4.4 kg/ha (+£12%)
9.0 kg/ha (+10%)
0.7 kg/ha (£8%)

14.3 kg/ha (£5%)

0.1 kg/ha (14%)
0.1 kg/ha (£12%)

<0.05 kg/ha (£27%)

0.1 kg/ha (+£12%)
0.1 kg/ha (£10%)
0.5 kg/ha (+10%)
0.5 kg/ha (+6%)

2.4 kg/ha (£27%)
0.7 kg/ha (£15%)
0.1 kg/ha (+£32%)
1.9 kg/ha (+11%)
2.2 kg/ha (+£11%)
na

18.8 kg/ha (£6%)

0.2 kg/ha (£21%)
0.5 kg/ha (+£15%)
<0.05 kg/ha (£31%)
0.3 kg/ha (+11%)
0.5 kg/ha (+12%)
na

0.8 kg/ha (£6%)

2 Total N and P loads in storm events were determined from total N and P concentrations from total sample (including water and sediment) digests at the Indiana sites (AS1,
CME, and ALG) and Ohio site (D1). At the Texas sites (Y8, Y2, and Mustang Creek), total N and P loads were determined as the sum of dissolved (NO3-N, NH4-N, and PO4-P) and

particulate loads.

Table 4

Constituent concentrations with cumulative probable uncertainty estimates for average concentrations within study periods.

Site (time period) TSS

NO3-N

PO4-P

Total N?

Total P?

Y8 (Aug 2004-]Jul 2005) 1075 mg/l (£5%)
Y8 (Aug 2005-]Jul 2006) 1046 mg/l (+9%)
Y2 (Aug 2004-]Jul 2005) 261 mg/l (£6%)

Mustang Creek (Jan 2005-Dec 2005) 518 mg/l (£11%)
AS1 (Apr 2004-Nov 2004) 2024 mg/l (+7%)

CME (Apr 2005-Nov 2005) na
CME (Apr 2006-Nov 2006) na
ALG (Apr 2004-Nov 2004) na
S2 (Jan 2000-Dec 2000) na
D1 (Jan 2006-Dec 2006) na

7.1 mg/l (£12%)

10.0 mg/l (£12%)

2.1 mg/l (£9%)
0.4 mg/l (£11%)

12.0 mg/l (+£11%)

0.7 mg/l (£12%)
2.5 mg/l (£7%)
7.9 mg/l (£6%)
0.1 mg/l (+4%)
3.2 mg/l (£3%)

0.7 mg/l (£9%)
0.3 mg/l (£13%)
0.3 mg/l (£7%)
0.1 mg/l (£12%)
0.3 mg/l (£7%)
0.1 mg/l (£12%)
0.1 mg/l (£7%)
0.1 mg/1 (+6%)
<0.05 mg/l (£6%)
0.1 mg/l (£4%)

9.3 mg/l (+9%)
11.8 mg/l (£11%)
2.7 mg/l (£7%)
2.3 mg/l (+13%)
2.0 mg/l (£9%)
1.4 mg/l (£12%)
1.7 mg/1 (+8%)
1.9 mg/l (+£8%)
na

4.6 mg/l (£4%)

1.6 mg/l (£8%)
0.8 mg/l (£10%)
0.4 mg/l (+£6%)
0.3 mg/l (£12%)
1.2 mg/l (+£10%)
0.2 mg/l (£12%)
0.3 mg/l (+8%)
0.4 mg/l (£9%)
na

0.2 mg/l (£5%)

@ Total N and P concentrations in storm events were determined by total sample (including water and sediment) digests at the Indiana sites (AS1, CME, and ALG) and Ohio
site (D1). At the Texas sites (Y8, Y2, and Mustang Creek), total N and P concentrations were determined as the sum of dissolved (NO3-N, NH4-N, and PO4-P) and particulate

concentrations.

5. Conclusions

Although most water monitoring agencies utilize quality
assurance protocols to reduce uncertainty, few spend the time and
effort to estimate and report data uncertainty. A simple, straight-
forward procedure to facilitate uncertainty estimation would
produce multiple benefits associated with uncertainty information
(e.g. enhanced monitoring design, decision-making, model appli-
cation, and regulatory formulation). The Data Uncertainty Estima-
tion Tool for Hydrology and Water Quality (DUET-H/WQ) was
developed with these benefits in mind to be a user-friendly tool to
assist data collectors and data users in estimating measurement
uncertainty. It is our hope that DUET-H/WQ contributes to making
uncertainty estimation a routine procedure in data collection and
reporting. Hydrologic and water quality data are too important for
scientists to continue to ignore the inherent uncertainty.

Both DUET-H/WQ and its framework-basis utilize the RMSE
uncertainty propagation methodology. For its initial applications,
the relatively simple RMSE method was preferred instead of more
rigorous approaches requiring detailed statistical information,
which is often unavailable for discharge and water quality data.
Although the RMSE method does not provide the most rigorous
uncertainty estimates, it is a widely accepted and should encourage
broader practical application than statistical alternatives with
unsubstantiated assumptions.

While all uncertainty analyses involve some degree of subjec-
tivity, Pappenberger and Beven (2006) concluded that user-
subjectivity should not preclude uncertainty analyses in hydrologic
modeling. The same conclusion applies for uncertainty estimation
in measured data. Reporting data uncertainty should be applauded,
even in face of considerable uncertainty, as long as the estimation
method is explicit and data have been collected using appropriate

procedures and quality assurance protocols as far as practicable. It
is unrealistic to expect all monitoring programs to be conducted
under ideal conditions with ample resources. As the present results
have shown, data collected with concerted quality assurance can
have appreciable uncertainty.

In the present research, the broad applicability of DUET-H/WQ
was established by its application in case studies with diverse
watershed conditions, which was important because its frame-
work-basis had been applied to arbitrary “data quality” scenarios
not real-world data. Results of the present application indicated
that each procedural category (discharge measurement, sample
collection, sample preservation/storage, laboratory analysis, and
data processing and management) can contribute substantial
uncertainty. Results also indicated that uncertainty is related to
constituent type (Q < TSS < dissolved N and P < total N and P) for
both individual storms and overall study periods. The uncertainty
estimates presented for measured TSS, NOs-N, PO4-P, total N, and
total P loads and concentrations provide fundamental information
related to discharge and water quality data. Thus, a scientific basis is
now available to answer such questions as: What is the typical
uncertainty for measured storm NO3-N loads? “14-31%.” What
about TSS storm concentrations? “12-22%.” This information has
immediate value in decision-making and scientific endeavor,
especially since project-specific data are rarely available.
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