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Abstract—Based on 1-km land surface model geophysical
predictions within the United States Southern Great Plains
(Red-Arkansas River basin), an observing system simulation ex-
periment (OSSE) is carried out to assess the impact of land surface
heterogeneity, instrument error, and parameter uncertainty on
soil moisture products derived from the National Aeronautics
and Space Administration Hydrosphere State (Hydros) mission.
Simulated retrieved soil moisture products are created using three
distinct retrieval algorithms based on the characteristics of passive
microwave measurements expected from Hydros. The accuracy
of retrieval products is evaluated through comparisons with
benchmark soil moisture fields obtained from direct aggregation
of the original simulated soil moisture fields. The analysis provides
a quantitative description of how land surface heterogeneity,
instrument error, and inversion parameter uncertainty impacts
propagate through the measurement and retrieval process to
degrade the accuracy of Hydros soil moisture products. Results
demonstrate that the discrete set of error sources captured by
the OSSE induce root mean squared errors of between 2.0%
and 4.5% volumetric in soil moisture retrievals within the basin.
Algorithm robustness is also evaluated for the case of artificially
enhanced vegetation water content ( ) values within the basin.
For large ( 3 kg m 2), a distinct positive bias, attributable
to the impact of sub-footprint-scale landcover heterogeneity, is
identified in soil moisture retrievals. Prospects for the removal
of this bias via a correction strategy for inland water and/or the
implementation of an alternative aggregation strategy for surface
vegetation and roughness parameters are discussed.

Index Terms—Microwave remote sensing, observing system sim-
ulation experiment, soil moisture, spaceborne radiometry.
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I. INTRODUCTION

AN IMPORTANT issue in the development of a dedicated
spaceborne soil moisture sensor has been concern over the

reliability of soil moisture retrievals in densely vegetated areas
and the global extent over which retrievals will be possible. Er-
rors in retrieved soil moisture can originate from a variety of
sources within the measurement and retrieval process. In addi-
tion to instrument error, two key contributors to retrieval error
are the masking of the soil microwave signal by vegetation [1],
[2] and the interplay between nonlinear retrieval physics and the
relatively poor spatial resolution of passive microwave space-
borne sensors [3]–[6]. Quantification of these errors requires
the realistic specification of land surface soil moisture hetero-
geneity and spatial vegetation patterns. Since detailed soil mois-
ture patterns are currently difficult to obtain from direct obser-
vation, an attractive alternative is the application of an observing
system simulation experiment (OSSE) in which simulated land
surface states are propagated through the sensor measurement
and retrieval process to investigate and constrain expected levels
of retrieval error [7], [8].

This analysis describes an OSSE performed for soil moisture
products to be derived from the NASA Hydrosphere State (Hy-
dros) mission. The Hydros mission is an Earth System Science
Pathfinder (ESSP) mission selected in 2002 by NASA for fur-
ther development and currently scheduled for launch in 2010
[9]. Hydros is designed to provide global maps of the earth’s soil
moisture and freeze/thaw state every 2–3 days for weather and
climate prediction, water, energy, and carbon cycle studies, and
natural hazards monitoring. Hydros utilizes a unique active and
passive L-band (1.2–1.4 GHz) microwave concept to simulta-
neously measure microwave emission and backscatter from the
surface across a wide spatial swath [9], [10]. The Hydros an-
tenna is an approximately 6-m diameter deployable lightweight
mesh reflector that provides footprint sizes of approximately
40 km for the radiometer and 30 km for the radar. The radar
resolution is enhanced to 1–3 km using synthetic aperture pro-
cessing. The key derived products are soil moisture at 40-km
resolution for hydroclimatology obtained from the radiometer
measurements, soil moisture at 10-km resolution for hydrome-
teorology obtained by combining the radar and radiometer mea-
surements in a joint retrieval algorithm, and freeze/thaw state at
3-km resolution for terrestrial carbon flux dynamics studies ob-
tained from the radar measurements.

For the OSSE described in this paper, we focus on the 40-km
soil moisture product, and use a baseline set of passive mi-
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crowave retrieval algorithms to illustrate Hydros retrieval capa-
bilities and examine error propagation in the algorithms. The
synthetic experiment is driven by realistically heterogeneous
land surface geophysical variables generated from a distributed
land surface model. These states are used to derive a set of sim-
ulated brightness temperatures which are degraded (i.e., spa-
tially aggregated and randomly perturbed with simulated instru-
ment noise) to simulate Hydros measurements and then inverted
back into soil moisture products using various retrieval algo-
rithms. Comparison of these retrievals to the original soil mois-
ture field reveals how the performance of soil moisture retrieval
algorithms will be impacted by vegetation density, measurement
resolution, inversion parameter uncertainty, and land cover het-
erogeneity. The intent of this analysis is not to capture the full
range of error sources impacting the accuracy of spaceborne soil
moisture retrievals. Rather, it is to study the error propagation of
a discrete number of error sources through the entire Hydros ob-
servation and retrieval system and examine prospects for reme-
diation strategies to reduce the impact of these errors on Hydros
soil moisture products. OSSE-type experiments provide a con-
trolled-synthetic environment within which such issues can be
addressed prior to sensor launch. The comparison of results in
this paper obtained from different retrieval algorithms is not in-
tended as a selection test for the algorithms but as a means to in-
vestigate the sensitivities of the different algorithm types to the
error sources studied in this OSSE. Continuing evaluations of
these and other algorithms will be performed in the years ahead,
using a variety of simulation and observational datasets, for fur-
ther algorithm optimization and selection prior to the launch
of Hydros. This particular study focuses exclusively on 40-km
Hydros soil moisture products derived from radiometer obser-
vations and passive-only soil moisture algorithms. Future work
will focus on higher resolution Hydros products derived from
radar observations.

II. HYDROS INSTRUMENT DESIGN

The Hydros instrument is designed for a 670-km circular,
Sun-synchronous orbit, with equator crossings at 6 A.M. and
6 P.M. local time. The instrument combines radar and ra-
diometer subsystems that share a single feedhorn and parabolic
mesh reflector. The radar operates with vertical (VV), hori-
zontal (HH), and horizontal–vertical (HV) transmit–receive
polarizations, and uses separate transmit frequencies for the H
(1.26 GHz) and V (1.29 GHz) polarizations. The radiometer
operates with V, H and U (third Stokes parameter) polarizations
at 1.41 GHz. The reflector is offset from nadir and rotates
about the nadir axis at 14.6 rpm, providing a conically scanning
antenna beam with a surface incidence angle of approximately
40 . The reflector diameter is roughly 6 m, providing a ra-
diometer footprint of approximately 40 km defined by the
one-way 3-dB beamwidth. The two-way 3-dB beamwidth de-
fines the real-aperture radar footprint of approximately 30 km.
The swath width of 1000 km provides global coverage within
3 days at the equator and 2 days at boreal latitudes ( N
or S). To obtain the desired 3-km spatial resolution, the radar
employs range and Doppler discrimination. Relevant Hydros
instrument characteristics are listed in Table I. Discussion of

TABLE I
HYDROS INSTRUMENT CHARACTERISTICS

the instrument measurement errors and sampling characteristics
is deferred to Section VI. Details of the Hydros mission and
instrument design are provided in [9] and [10].

III. OSSE DESIGN

The OSSE is designed to simulate Hydros sensor and orbital
characteristics. The simulation involves four elements: 1) a land
surface model (LSM); 2) a forward microwave emission model
(MEM); 3) an orbit and sensor model (OSM); and 4) an inverse
retrieval model (RM). A flowchart of the forward and inverse
modeling is shown in Fig. 1. The LSM is used to generate a
simulated 2-D spatial scene as a 1-km grid of geophysical pa-
rameters covering a sufficiently large region of the U.S. to in-
corporate a diversity of land cover types and representative dy-
namic ranges of soil moisture, temperature, and other surface
characteristics.

Brightness temperatures are computed at the Hydros
frequencies, polarizations and look angle via the MEM. Inputs
to the MEM are provided by 1-km gridded geophysical vari-
ables—predicted by the LSM—and observed land surface char-
acteristics. The OSM applies representative orbit sampling and
antenna spatial resolution characteristics to the simulated mea-
surements, and adds expected instrument noise and relative cal-
ibration error. It outputs simulated Hydros radiometer measure-
ments at 40 km which are run through a series of RMs to obtain
40-km soil moisture estimates. These retrieved soil moistures
are compared with the original soil moisture “truth” fields (after
degrading these to 40 km) to obtain the error characteristics
of the radiometer-based soil moisture retrievals. Consequently,
the OSSE can conceptually be divided up into two parts. The
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Fig. 1. Illustration of OSSE procedure using simulated soil moisture and
brightness temperature imagery. Key components include the land surface
modeling (LSM), microwave emission modeling (MEM), orbital and sensor
modeling (OSM), and soil moisture retrieval modeling (RM).

“forward” portion of the simulation—described in Sections IV
and V—which consists of the generation, aggregation, and per-
turbation of synthetic Hydros observations, and the “retrieval”
portion—described in Section VI—which entails the inversion
of synthetic microwave observations into Hydros soil moisture
products.

IV. LAND SURFACE MODELING

The starting point for the simulations is the generation of
high-resolution (1-km) geophysical fields using a land surface
model (LSM) applied within the United States Southern Great
Plains. The LSM used in the computations is the TOPLATS hy-
drological model [11]. The spatial domain is the 575 000-km
Red-Arkansas River Basin in the south-central United States
(see Fig. 2). The approach to the land surface modeling and data-
base generation is based on [7] and [12]. The simulations over
the spatial domain are forced by the following static datasets: 1)
a U.S. Geologic Survey land cover database1 at 1 km derived
from Advanced Very High-Resolution Radiometer (AVHRR)
overpasses between April 1992 and March 1993 using the clas-
sification methodology presented in [13] and [14]; 2) a soil tex-
ture database at 1 km derived from merged State Soil Geo-
graphic (Penn State University) products;2 3) a USGS digital
elevation model at 1 km;3 and 4) a normalized difference veg-

1See http://www.nationalatlas.gov/landcvm.html.
2See http://www.essc.psu.edu/.
3See http://edcdaac.usgs.gov/gtopo30/gtopo30.asp.

Fig. 2. Location of OSSE domain within the continental United States.

etation index (NDVI) database4 at 1 km derived from AVHRR
data and based on composite imagery from June 1995. The land
cover and soil texture classifications are listed in Tables II and
III.

TOPLATS is run with three water and energy balance layers.
The top water balance layer extends from the surface to a depth
of 5 cm, and the second layer from 5 cm to the top of the water
table (depth to water table is also a dynamic state variable). The
top layer soil moisture value is taken to be an integrated value
over the top 5 cm. The energy balance discretization has a node
at the surface, a node at 5 cm and third node at 50 cm. The 50-cm
node is prescribed to vary seasonally. Input forcings are de-
rived from 4-km Weather Surveillance Radar precipitation im-
agery, 1-km Geostationary Operational Environmental Satellite
(GOES) solar radiation imagery, and spatially interpolated Na-
tional Climate Data Center surface airways meteorology data.
Model outputs are generated at hourly time steps and saved in
the output database every 12 h at 6 A.M. and 6 P.M. local times
to simulate the Hydros overpass times. The outputs generated
by the model include: 1) vertically integrated 0- to 5-cm soil
moisture expressed as volumetric soil moisture; 2) surface (soil
or vegetation) skin temperature; and 3) soil temperature at 5 cm
below the surface. Model validation against ground measure-
ments from the Southern Great Plains Atmospheric Radiation
Measurement Cloud and Radiation Test bed (ARM-CART) site
is described in [12]. The time period for the LSM simulations
is from April 1, 1994 to July 31, 1994. Basin-averaged rain-
fall and simulated soil moisture conditions for this time period
are plotted in Fig. 3. However, the actual OSSE is conducted
only for the subset of this period between May 26, 1994 to June
28, 1994 that demonstrates a pronounced transition between wet
and dry surface conditions.

4See http://edc.usgs.gov/products/landcover/ndvi.html.
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TABLE II
LAND COVER CLASSIFICATIONS AND REPRESENTATIVE ROUGHNESS AND

VEGETATION PARAMETERS (DESCRIBED IN TEXT)

TABLE III
SOIL TEXTURE CLASSES

V. MICROWAVE EMISSION MODELING

Based on the LSM output fields, a microwave emission model
(MEM) is used to simulate radiometer observations of the geo-
physical scene. The parameterizations of the MEM represent
tradeoffs between the need to adequately represent the key ef-
fects of surface characteristics on microwave signatures at the
spatial scale of interest (40 km), and the need for a sufficiently
simple representation for application to satellite retrieval algo-
rithms. The MEM incorporates the effects of dynamic features,
e.g., surface soil moisture and soil temperature, and static fea-
tures (on the simulation time scale) such as soil texture, soil
surface roughness, land-cover and vegetation type, and vegeta-
tion water content. Effects of soil freezing, thawing, and snow
cover are not considered in the simulations, and effects of at-
mospheric variability are assumed negligible at L-band for non-
raining conditions. Computations are performed at the 40 look

Fig. 3. Time series of areally averaged precipitation and LSM (TOPLATS) soil
moisture simulations within the OSSE domain. Dashed vertical lines represent
the starting and stopping times of the OSSE simulation.

angle and at 1.41-GHz V and H polarizations. Heterogeneity is
taken into account by aggregating from the 1-km scale up to the
40-km product scale for Hydros radiometer-based soil moisture
retrievals.

The microwave emission model is based on a layered single-
scattering soil–vegetation model commonly used for passive
microwave sensing at L-band [1]. The modeled brightness tem-
perature includes components from the soil and vegetation
and is expressed as

(1)

The subscript refers to polarization ( or ), is the soil ef-
fective temperature, is the vegetation temperature, is the
nadir vegetation opacity, is the vegetation single scattering
albedo, and is the soil reflectivity. The reflectivity is related
to the emissivity by , and , , and are values
at the Hydros look angle of . Equation (1) assumes
that vegetation multiple scattering and reflection at the vegeta-
tion–air interface are negligible. Specular reflection is assumed
at the soil surface, but with reflectivity modified for surface
roughness. The parameters and represent the composite
vegetation volume (leaves, stalks, branches, trunks) modeled as
a homogeneous medium. Nadir vegetation opacity is related to
the total columnar vegetation water content kg m by

(2)

The coefficient depends on vegetation type [2], [15]. Due to
the predominantly vertical orientation of vegetation stem and
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trunk structure, tends to be larger than for most vegetation
types [16]. The vegetation water content is the average value
over the 1-km pixel since no attempt is made to model fractional
vegetation cover within a 1-km pixel. In addition, the polariza-
tion dependence of is ignored.

Roughness influences the sensor response through the root
mean squared (RMS) surface height , the horizontal correla-
tion length , and the roughness spectrum. The roughness effects
can be computed using a theoretical model such as the integral
equation model [17] or empirically using the model [18].
At L-band the polarization mixing parameter is small, and the
roughness effect using this model can be approximated as

(3)

The parameter is assumed to be linearly related to the RMS
surface height , and is the reflectivity of the equivalent
smooth soil surface, determined by the soil dielectric constant
using the Fresnel equations.

At the 6 A.M. overpass time, the vegetation temperature
is assumed to be equal to the soil surface skin temperature .
The soil microwave effective temperature is estimated as
the weighted average of the surface skin temperature and the
5-cm temperature . The weighting is actually a function of
soil moisture, since the penetration depth varies with moisture,
but, for simplicity, the direct average is used here

(4)

For a water surface the observed brightness temperature is

(5)

where is the Fresnel smooth surface reflectivity for fresh
water at temperature [19]. Wind-induced surface roughness
is neglected.

In general, the key assumptions implicit in (1)–(5) (e.g., the
neglect of multiple vegetation scattering and reflection, the ne-
glect of polarization differences in , the linear relationship
between and , and the linear relationship between and
) have been supported by airborne and tower campaigns over

grass, shrubland, and agricultural crop land cover types [1],
[2], [20]. However, much less evidence is available to support
their suitability over forested regions. Consequently, predictions
made by the MEM are likely more accurate over lightly vege-
tated western and central portions of the Red-Arkansas River
Basin than over forested areas along the eastern edge of the
OSSE domain.

A. Soil Dielectric Mixing Model

The real part of the soil dielectric constant, , and the Fresnel
smooth surface reflectivities, and , are computed as func-
tions of soil moisture for the distribution of soil textures (sand
and clay fractions, and ) found over the basin. The compu-
tation is done using the empirical relations of Dobson et al. [21]
based on the data of Hallikainen et al. [22]. Parameters required
in these models include the soil bulk density and the specific

density of solid soil particles. A value of 2.66 g cm was as-
sumed for soil specific density. Bulk density values were calcu-
lated from specific density and porosity values estimated from

and using the regression relationship presented in [23].

B. Parameterization and Dataset Generation

Due to large uncertainties in the correct field-scale emission
parameterization for many land surface types, it is difficult to
unambiguously specify vegetation and surface parameters re-
quired by (1). While emission parameters are selected based on
best available published information and constitutive relation-
ships, some level of uncertainty and error is inevitable. How-
ever, it is important to note that the purpose of this study is not
to perfectly mimic actual land surface emission for the study pe-
riod, but rather to investigate—as accurately as possible—key
aspects of error propagation in Hydros soil moisture retrievals
given our current level of understanding concerning large-scale
patterns in land surface emission parameters. Therefore, a rea-
sonable level of error in the parameters described in this section
is both expected and tolerable.

Vegetation and surface roughness parameters assigned to land
cover types are listed in Table II. Surface roughness parameters

and are assigned to the different land cover classes in the
basin using values for categories of bare soils, crops, and grass-
land given in [20]. A factor of 0.1 cm provides an approxi-
mate scaling between (cm) and at L-band [20], [24]. Listed
values are intended to be representative of mean magnitudes for
the different land cover classes. For example, cropped surfaces
are assigned higher mean roughness than pasture or uncultivated
surfaces. Due to a lack of reliable published information con-
cerning values for trees, they are set to a baseline value of
1 cm. Nonpolarized values of the vegetation parameters and
are also assigned based on land cover types, using representative
values for herbaceous and woody vegetation listed in [1]. Based
loosely on polarization results presented in [16], values for ver-
tically polarized (horizontally polarized) -parameters are esti-
mated by increasing (decreasing) the baseline nonpolarized
values by 10% for grasses/crop/shrub landcovers and 20% for
forested areas (Table II). The canopy vegetation water content

is obtained from the NDVI dataset using the relationship
[20]

NDVI NDVI (6)

This relationship was derived for grassland/crop conditions
using NDVI observations derived from 30-m Landsat Thematic
Mapper data over south-central Oklahoma. Here we extrapolate
its use to all land cover types using 1-km AVHRR observation
of the Red-Arkansas River basin between May 13 and July 7,
1995. While this is clearly stretching (6) somewhat beyond its
original formulation, the resulting 1-km fields represent the
best available representation of spatial patterns of variability
required for the analysis. For NDVI , (6) predicts
values less than zero, in which case is set to zero. Since
the NDVI is sensitive to vegetation greenness, its signal comes
primarily from the foliar canopy and not the woody components
of the vegetation. In contrast, the microwave signals include
contributions from the water content of the trunks and branches
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as well as the leaves. Hence, for the simulations, a woody
component fraction is used to scale the foliar water content
derived from (6) to a total columnar water content,

(7)

The values assumed for are shown in Table II. They are rough
intuitive estimates based on basic tree and shrub physiology and
not derived from any published source.

Simulated brightness temperatures and were com-
puted from (1)–(7) using the , , (or and ), and pa-
rameters in Table II for each vegetation class. Cases for unpo-
larized and polarized values were run separately to examine
the effects of polarization and uncertainty in values on the re-
trievals. To examine the impact of larger amounts of vegetation,
the microwave computations of and were carried out
for two levels of vegetation water content, i.e., and ,
where is the value obtained from (7).

VI. ORBIT AND SENSOR MODELING

A. Aggregation

To facilitate Hydros data processing, radiometer data will be
registered to earth-fixed grids of dimensions appropriate to the
sensor footprint resolutions and sampling. For the radiometer
simulations we define two nested grids of dimensions 1 and
36 km. The 1-km grid represents the resolution of the under-
lying geophysical fields, and the 36-km grid (a multiple of three
for later nesting of 3-km radar measurements) represents the

40-km radiometer footprint resolution; 36-km radiometer ob-
servations were computed by linear averaging of the simulated
1-km and in each 36-km grid cell. Precise Hydros or-
bital sampling patterns were not simulated. Instead a Hydros
overpass covering the simulation domain was assumed every
day at 6 A.M. and 6 P.M. local times. This approach is suffi-
cient to illustrate the main features of resolution degradation, in-
strument measurement error (discussed in the next section), and
soil moisture algorithms. In this paper, only the results from the
6 A.M. simulations are discussed. The LSM outputs ( , , )
and surface characteristics parameters ( , , , , , , )
were also linearly averaged from 1- to 36-km grid cells. Since
values for , , and are undefined for water surfaces, inland
water pixels were neglected when aggregating these parameters
to 36 km.

B. Measurement Error

The radiometer measurement relative error includes instru-
ment noise (that limits the measurement precision) and calibra-
tion relative error. The measurement precision (i.e., for the
radiometer) is inversely proportional to the square root of the
bandwidth and the sample integration time. For the Hydros orbit
altitude and antenna size, mapping coverage at the surface re-
quires a reflector rotation rate of 14.6 rpm and radiometer inte-
gration time of 42 ms. The integration time is effectively dou-
bled if both fore- and aft-looking measurements of the same
area are combined. The radiometer bandwidth of 25 MHz and
system noise temperature of 590 K result in a single-look pre-
cision of 0.58 K, and combined fore and aft (two looks) preci-

sion of 0.4 K. The relative calibration error, including antenna
effects, is estimated as 0.5 K. The root-sum square of the cal-
ibration stability and the two-look measurement precision re-
sults in a total measurement relative error of 0.64 K (Table I).
Accounting also for the reduction in noise by averaging the sam-
ples into 36-km grid cells, a reasonable range of relative error to
consider is 1 K (high case) to 0.5 K (low case). The high case al-
lows for some additional uncertainty in the calibration stability
of the mesh antenna. To simulate the measurement error, spa-
tially independent Gaussian noise with a standard deviation of
1 K was added to the 36-km brightness temperature retrievals.
This was done independently for both radiometer polarizations
and for each day of the simulation.

C. Parameter Error

In operational settings, large uncertainty may exist in foot-
print-scale parameters used to invert observations of brightness
temperature into soil moisture estimates. The impact of this un-
certainty was addressed by adding synthetic noise to the 36-km
aggregated fields of and used in the retrievals. To simulate
retrieval parameter uncertainty, Gaussian error with a standard
deviation of 0.02 was added after the 1-km and fields used
in the original forward MEM modeling had been aggregated up
to 36 km. For simplicity of analysis, the same perturbation was
applied to both and for a given pixel.

The radiometer retrievals also require knowledge of effective
surface temperature and various ancillary land surface parame-
ters. It is assumed that the 6 A.M. effective temperature (corre-
sponding to the local time of the morning Hydros overpass) can
be estimated from observations or operational forecast models
to within a root mean square accuracy of 1.5 K. Hence, the
computed and aggregated data fields were perturbed with
1.5-K Gaussian random noise. Among other sources, this in-
duced error is meant to capture uncertainties in the simplified
model in (4) used to estimate from the surface skin and soil
temperatures.

VII. SOIL MOISTURE RETRIEVAL ALGORITHMS

In the next step of the simulation, the synthetic 36-km
observations described above were inverted into soil moisture
products using a number of different retrieval models. The in-
tent was to examine the sensitivities of the different algorithms
to specific errors and assumptions. Three models using the ra-
diometer data to produce a 36-km soil moisture product, desig-
nated “A”, “B”, and “C”, were used. Retrievals were performed
using the realistic vegetation water content fields in the
Red-Arkansas Basin (Case ) as well as the synthetic case of
artificially tripling the vegetation density (Case ). The three
algorithms differ primarily in the amount of ancillary soil and
vegetation information required to retrieve soil moisture, with
algorithm A requiring the most ancillary information and algo-
rithm C the least.

A. Single-Polarization Algorithm

The first retrieval algorithm (A) is based on the algorithm in-
troduced in [25]. It uses a single-channel measurement and
neglects differences between canopy and soil temperature by as-
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suming in (1). Given known ancillary values of , ,
, , , and , this assumption allows (1) to be solved for

based on a single-channel observation (here synthetically
derived using the MEM). Footprint-scale (36-km) values of ,

, , , and are obtained by averaging values in Table II
according to the aggregation rules presented in Section VI-A.
As discussed in Section VI-C, noisy values of and are
used in the retrieval. Reflectivity retrievals are converted into
soil moisture via the Fresnel equations and the Dobson soil di-
electic mixing model [21].

B. Dual-Polarization Iterative Algorithm

The second algorithm (B) is based on the retrieval strategy in-
troduced by [26] and utilizes both and measurements
(synthetically generated using the MEM approach in Section V).
The soil moisture and vegetation water content are given
initial estimates that are adjusted iteratively in computations of

and until the difference between the computed (using
(1) with and the Dobson soil dielectric mixing model
[21]) and observed dual-polarization brightness temperatures is
minimized in a least squares sense. Experience with the ap-
proach has demonstrated that such an optimization is generally
well-posed and exhibits little sensitivity to the values of and

used to initialize the iterative search. No knowledge of
is required since both and are simultaneously retrieved.
Footprint-scale (36-km) values of , , , and used in the re-
trieval are obtained by averaging values in Table II according to
the aggregation rules presented in Section VI-A. As discussed
in Section VI-C, noisy values of , , and are used in the
retrieval.

C. Multipolarization Regression Algorithm

The third algorithm (C) is based on utilizing both and
measurements to estimate a combined roughness and veg-

etation correction factor which is then used to calculate an H-po-
larization bare-soil reflectivity and, eventually, soil moisture.
This algorithm was developed to investigate the extent to which
soil moisture could potentially be estimated without the use of
roughness and vegetation ancillary data, although, in practice,
regression algorithms must be used with caution since they are
tuned to specific datasets.

The approach can be illustrated by writing (1) in a more de-
tailed form that separates out contributions from the vegetated

and bare soil fractions of the footprint

(8)

The parameters and now refer to just the vegetated portion
of the footprints, rather than to averaged values over the entire
footprint as in (1). Assuming and inserting (3), (8) can
be rewritten as

(9)

Fig. 4. Actual versus calculated, via (13), vegetation correction factors (V C).

where is a correction parameter for the combined effect of
the surface roughness and vegetation and defined as

(10)

is a vegetation correction factor defined as

(11)

and the total emissivity is

(12)

The retrieval approach is based on combining measurements of
with regression models for and to solve for via

(9).
Neglecting polarization differences in and , a set of emis-

sion signals were simulated using (8) with varied between
0.2 and 1, between 0.067 and 1, and between 0.03 and 0.18.
Using this simulated set, a regression analysis was performed
to derive the best functional relationship between (now as-
sumed to be polarization independent) and multipolarized total
emissivity

(13)

Fig. 4 plots scatterplots of values estimated using (13) and
true and values calculated using (11). By using only
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a single value from (13), small polarization differences be-
tween and (and thus between and ) are implic-
itly neglected in this stage of the retrieval.

In addition, using the Fresnel equations, a set of simulated
and values were derived at the 40 Hydros look angle using
volumetric soil moisture values between 2% and 50%, and the
power law relationship

(14)

was fit to this simulated data. Values of estimated via (14)
have an RMSE of 0.000 64. By combining (9) and (14), the ef-
fect of surface dielectric properties in the measurements is can-
celed out and a correction index factor can be defined
as

(15)

Since the forward MEM simulation is based on with
different and values for various landcover types, a basin-
wide average value of 1.25 is assumed for the ratio . Based
on this assumption, it was found that can be estimated by

(16)

The expression (16) works well for small to moderate optical
thickness conditions with ; however, es-
timation error increases for . Overall, the
absolute RMSE for values estimated via the regression fit
in (16) is 0.029.

For the inversion, and are first derived using and
observations combined with ancillary data. Then, (13)

is used to estimate , (15) is used to estimate , and
(16) is used to estimate . Finally, is estimated using
(9) and converted into soil moisture using the Fresnel equations
and Dobson mixing model [21]. As mentioned earlier, this al-
gorithm requires no ancillary vegetation or surface roughness
information.

For all three retrieval approaches, it is important to note that
a number of key retrieval assumptions (e.g., neglecting polar-
ization impacts on , the linear relationship between and

, the linear relationship between and , and neglecting mul-
tiple vegetation scattering and reflection) are common to both
the forward and retrieval models. Consequently, their impact on
retrieval errors is not captured. Instead, within this particular
OSSE, retrieval errors arise primarily from four sources: aggre-
gation impacts associated with the loss of sub-footprint-scale
land surface heterogeneity (Section VI-A), observation error
added to , , and (Section VI-B), parameter error
added to and (Section VI-C), and assumptions employed
in retrieval modeling not utilized in the forward MEM portion of
the OSSE (i.e., in algorithms A, B, and C and
in the regression (14) for algorithm C). In addition, the accuracy
of the regression expressions employed by algorithm C (e.g., see
Fig. 4) impacts its retrieval accuracy.

Fig. 5. Time series of (a) mean and (b) standard deviation of retrieved minus
benchmark 36-km soil moisture values. Also shown are (c) total RMSE for
36-km soil moisture retrievals.

VIII. RETRIEVAL RESULTS AND ERROR SOURCES

Fig. 1 illustrates the OSSE procedure using simulated 1-km
soil moisture images generated by TOPLATS (Section IV). This
imagery is used to create 1-km images (Section V), which
are first aggregated and then randomly perturbed with added in-
strument noise (Section VI) prior to their insertion into a re-
trieval algorithm (Section VII). Time series for the mean and
standard deviation of differences between 36-km soil moisture
retrievals and benchmark 36-km soil moisture fields for the
case are shown in Fig. 5(a) and (b). Benchmark fields are de-
rived via direct aggregation of the original 1-km soil moisture
field produced by the LSM, and differences are defined as re-
trieved minus benchmark values. The mean (bias) values shown
in Fig. 5(b) are the overall basin-wide biases in the soil mois-
ture retrievals. The standard deviation values plotted in Fig. 5(a)
are equivalent to the bias-removed RMS error (RMSE) for in-
dividual 36-km soil moisture retrievals within the basin, as in
(17), shown at the bottom of the page, where is the total
number of 36-km pixels in the OSSE domain for a given day
(i.e., a single Hydros overpass). Fig. 5(c) shows total RMSE

RMSE Retrieved Benchmark

Bias Std. Dev. (18)

derived by pooling results from all 36-km pixels in the OSSE do-
main. Total soil moisture RMSE for all three algorithms is con-
strained within a range of between 2.0% and 4.5% volumetric

Std Dev Retrieved Benchmark Retrieved Benchmark (17)
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for all days. The multipolarization regression algorithm (C) has
the lowest retrieval standard deviation and RMSE followed by
the single-polarization algorithm (A). The superior performance
of algorithm A relative to the multipolarization iterative ap-
proach (B) likely reflects the fact the algorithm A is given access
to vegetation water content information information that is
withheld from algorithm B. Retrieval biases are generally small
for all algorithms, although algorithm B does exhibit a persistent
positive bias of approximately 1% volumetric and algorithm C
exhibits a temporally varying bias that is negative for early (wet)
portions of the OSSE and gradually becomes more positive as
the OSSE domain dries out toward the end of June (i.e., after
Julian day 165). However, with the exception of bias results for
algorithm C, relatively little temporal variability is observed in
soil moisture retrieval error statistics despite the presence of sig-
nificant temporal variability in overall soil moisture conditions
within the basin (see Fig. 3).

Rerunning the OSSE for the case of no polarization effects
(i.e., in both the forward MEM and retrieval
algorithms) and no added noise, reduces absolute RMSE errors
in Fig. 5 for algorithm B by about 1% to 2% volumetric and
algorithm A by 0.5% to 1% volumetric. The smaller impact for
the single-polarization algorithm A occurs because the positive
impact of removing noise on retrieval accuracy is partially
offset by the effective increase in vegetation optical depth when
moving from to (i.e., ; see Table II).

A. Impact of Vegetation

Spatial patterns in retrieval errors appear to be driven pri-
marily by the distribution of vegetation within the OSSE
domain. For the original case of polarized dependency and
uncertainty in , Fig. 6 plots retrieved soil moisture RMSE
[Fig. 6(c)] and bias [Fig. 6(b)] stratified by the mean vegetation
water content contained within each 36-km pixel. Statis-
tics are pooled values for all 36-km pixels in each scene and all
days of the OSSE. Despite relatively low errors for the domain
as a whole (Fig. 5), significant errors are present in algorithm
A and B soil moisture retrievals for the relatively small number
of 36-km pixels where kg m . A large fraction
of this error is associated with a positive bias in retrievals
for heavily vegetated pixels [Fig. 6(b)]. Unfortunately, there
are too few densely vegetated pixels within the study area to
study this retrieval aspect in detail for the baseline case
[Fig. 6(d)]. To remedy this, the values in the basin were
artificially scaled up by a value of three and the OSSE repeated
in whole. Depending on the amount of vegetation present, this
artificial scaling of increases 36-km values by between
0–30 K and 36-km values between 0–20 K. Soil moisture
retrieval results for this artificial case are presented in
Fig. 7. Substantial errors in A and B retrievals are noted for
values exceeding 3 kg m and in C retrievals for values
exceeding 4 kg m . As in Fig. 6, a significant fraction of
this error is due to the impact of positively biased soil moisture
retrievals at high . The retrieval bias is dependent on the
landscape heterogeneity within the radiometer footprint caused
by inland water and vegetation, as discussed below.

Fig. 6. For the 1W case, plots of retrieved 36-km soil moisture (a) standard
deviation, (b) bias, and (c) RMSE stratified by 36-km vegetation water content
values and (d) the histogram for 36-km vegetation water content values within
the OSSE domain.

B. Impact of Inland Water

Within the Red-Arkansas river basin, heavily vegetated areas
of the basin exhibit the greatest amount of spatial variability in
canopy opacity due to mixed grassland/forest regions and a rela-
tively high areal fraction of inland water in the densely vegetated
eastern portion of the basin. In particular, emission from inland
water can confound soil moisture retrievals by contaminating
radiometer observations with surface signals containing no soil
moisture information [8]. In the retrieval algorithms discussed
in Section VII, soil moisture estimates were derived assuming
that all observed microwave emission originates from land. The
impact of neglected inland water on soil moisture estimates is
illustrated by repeating Fig. 7(b) for the case of screening all
36-km pixels containing any 1-km pixels classified as inland
water. Fig. 8 illustrates the impact of such stringent masking
by plotting soil moisture retrieval biases for the A, B, and C al-
gorithms (Case ) stratified by 36-km values. Screening
36-km pixels with at least some inland water substantially re-
duces positive biases in algorithm B retrievals for 36-km pixels
with greater than 2 kg m . Although less dramatic and lim-
ited only to values below about 5 kg m , improvements in
A and C retrievals are also realized. Operationally, such strin-
gent screening is unappealing since it prevents the retrieval of
soil moisture in approximately one-third of the 36-km pixels
in the basin. An inland-water correction approach suitable for
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Fig. 7. For the 3W case, plots of retrieved 36-km soil moisture (a) standard
deviation, (b) bias, and (c) RMSE stratified by 36-km vegetation water content
values and (d) the histogram for 36-km vegetation water content values within
the OSSE domain.

Fig. 8. For all three retrieval algorithms, soil moisture retrieval biases,
stratified by 36-km W levels, for all 36-km pixels (solid line) and only those
36-km pixels without any inland water (dashed line).

operational soil moisture retrievals will be presented later (see
Section IX-A).

C. Impact of Land Surface Heterogeneity

Large residual biases in Fig. 8(a) remain in algorithm A
soil moisture retrievals even when inland water is completely

Fig. 9. Difference in soil moisture retrieval biases when applying algorithm A
to 1-km (dashed line) and 36-km (solid line) geophysical fields.

screened. Sensitivity results (not shown) demonstrate that nei-
ther the inclusion of mean-zero noise in and observations
nor the assumption that contributes significantly to
this positive bias. Instead, the bias appears due to aggregation
effects associated with the poor spatial resolution of radiometer
(36-km) observations relative to the baseline resolution of
the LSM simulations underlying the OSSE (1-km). These
aggregation impacts arise from the nonlinearity of the soil
moisture retrieval process with respect to various land sur-
face parameters and the inability of a spaceborne radiometer
to capture the net impact of sub-footprint-scale correlations
between and land surface parameters. Fig. 9 quantifies
these impacts on algorithm A retrievals by comparing bias
results for the application of algorithm A to simulated 1-km

and measurements (with 1.5 and 1 K added Gaussian
noise, respectively) and the subsequent aggregation of 1-km
soil moisture retrievals to 36-km, versus results for the baseline
OSSE approach of applying retrieval algorithms to simulated
36-km observations and aggregated fields of ancillary data.
The large positive bias observed at high in Figs. 7(b) and
8(a) is eliminated by application of the retrieval approach at a
finer spatial resolution (1 versus 36 km).

For kg m , it is telling that aggregation impacts ap-
pear largest in algorithm A results (see Figs. 8 and 9) relative to
other approaches since it is the only algorithm to rely on directly
averaged values to perform 36-km soil moisture retrievals.
Fig. 10(a) plots the bias in 36-km soil moisture retrievals versus
the 1-km variability in within each 36-km pixel for algo-
rithms A and B. Large biases in algorithm A retrievals, and large
differences between A and B results, occur primarily in pixels
exhibiting high variability. Differences between algorithms
A and B stem solely from the manner in which 36-km values
are calculated. Fig. 10(b) plots biases (calculated relative to the
direct aggregation of 1-km values) in 36-km values used
by both algorithms. Algorithm A is forced to use a direct linear
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Fig. 10. For algorithms A (solid line) and B (dashed line), retrieval biases in
(a) soil moisture and (b) W stratified by levels of 1-km W variability within
each 36-km pixel.

average of 1-km values. In contrast, algorithm B is allowed
to solve for effective 36-km values based on optimal fitting
to 36-km and observations. For pixels with high
variability, algorithm B retrieves 36-km values that are con-
sistently biased low relative to those derived from direct aggre-
gation of 1-km fields. However, using lower values means
that algorithm B calculates lower surface reflectivities, and soil
moistures, relative to algorithm A. This partially corrects algo-
rithm B results for the large positive bias seen in A for highly
variable pixels. That is, the iterative B algorithm solves for ef-
fective values of 36-km that offer at least a partial correction
to biases arising from aggregation impacts. These impacts are
further examined in Section IX-B.

IX. OPERATIONAL CORRECTION STRATEGIES

Results in Figs. 7–10 suggest that some type of correction
strategy will be required for the dual impact of inland water and
vegetation variability to guarantee adequate accuracy for soil
moisture retrievals in heterogeneous and/or heavily vegetated
pixels (i.e., kg m ). The potential of two operational
strategies is examined here.

A. Inland Water Correction

The impact of inland water can be corrected by modifying
observations for the impact of inland water and recalculating

Fig. 11. For all three retrieval algorithms, soil moisture retrieval biases,
stratified by 36-kmW levels, for the baseline retrieval case (solid line) and the
inland water correction strategy outlined in (20) (dashed line).

soil moisture. Actual 36-km observations are based on a
linear average of emission from both water and land surfaces

(19)

where is the fraction of the footprint covered by water. This
fraction can be estimated from either high-resolution visible/in-
frared imagery or high-resolution (3-km) mapping of the foot-
print using the active radar capability of the Hydros sensor. Here
a separate is determined for each 36-km pixel in the OSSE
domain based on the 1-km land cover classification described
in Section IV. Values for within 36-km pixels in the domain
range between zero to near 0.40. Given knowledge of and
(19), emission from the land surface can be estimated as

(20)

Assuming and are available from ancillary sources, V-
and H-polarized can be estimated via (5) and (20) and
used in lieu of observations to derive 36-km soil moisture
products. Doing so leads to reductions in soil moisture biases for
all three retrieval algorithms (Fig. 11). These results are similar
to results based on stringent screening of inland water in Fig. 8,
except this approach has the large added benefit of not reducing
the areal extent of soil moisture retrievals.

B. Alternative Aggregation Techniques

Even after correction for inland water, soil moisture retrieval
errors remain significant for algorithm A in the case of artifi-
cially enhanced levels (case ). Residual error is due to
aggregation impacts associated with the retrieval procedure. For
instance, neglecting the single-scattering albedo, reflectivity re-
trievals for algorithm A simplify to

(21)
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Fig. 12. Impact of alternative aggregation for soil (h) and vegetation (W and
b ) parameters on the calculation of 36-km exp(2b W sec � + h).

Applying (21) at 1 km (i.e., the resolution of vegetation and
LSM products) and aggregating results to 36 km yields the
benchmark case

(22)

or

(23)

where brackets { } indicate spatial averaging. In contrast, first
averaging and then applying algorithm A (as in Section VII-A)
yields

(24)

or, neglecting variability,

(25)

Because soil moisture is (nearly) directly proportional to reflec-
tivity, soil moisture bias results from Figs. 9 demonstrate that,
on average, .

Intercomparison of (23) and (25) suggests that one possible
way to correct the bias in retrievals is to utilize an al-
ternative aggregation scheme whereby 1-km , , and values
are transformed via and aggregated as a
single quantity. However, due to the positive concavity of the ex-
ponential function, plotted results in Fig. 12 demonstrate a clear
tendency for

(26)

within the OSSE domain. Consequently, utilizing an alterna-
tive aggregation scheme for , , and in the calculation

of via (25) actually increases the positive bias in
reflectivity retrievals. Intercomparison of (23) and (25) in light
of the inequality in (26) reveals that the covariance term in
(23)— —must be
negative and the dominant source of positive bias in retrievals
utilizing (25) relative to (23). The covariance term represents
the impact of sub-footprint-scale correlation between static
land surface characteristics and the observed brightness tem-
perature. Such correlation is imposed on the simulations by
the 1-km forward microwave emission model and reflects the
tendency for areas with high (and/or ) to be associated with
low observed reflectivity . Because it is partially
based on unresolvable sub-footprint-scale variations in , es-
timation of this term is difficult even if 1-km fields of , , and

are known. Within this OSSE, variability in dominates
overall variability in the term . Consequently,
the inability to resolve this sub-grid-scale correlation between
this term and appears to have the largest impact in cases of
dense and/or highly variable vegetation cover.

X. DISCUSSION AND CONCLUSION

The observing system simulation experiment described here
captures the influence of land surface heterogeneity, obser-
vation noise, inversion parameter uncertainty, and retrieval
assumptions on the accuracy of radiometer-only Hydros soil
moisture products. Examining these error sources in a con-
trolled numerical setting provides an opportunity to assess
eventual processing and retrieval strategies designed to mitigate
their impact. Nevertheless, care should be taken when equating
error results presented here to accuracy expectations for actual
Hydros soil moisture products. This particular OSSE provides
a simplified representation of only a partial set of error sources
within actual retrievals. Particular choices concerning the
nature of represented error may impact the relative accuracy
of various retrieval algorithms. For instance, the decision to
neglect error in estimates almost certainly reduces error
in algorithm A’s soil moisture retrievals but has little or no
effect on algorithm B and C’s results, which do not explicitly
consider vegetation water content. In addition, while useful
as a test-bed to study strategies for treating aggregation-based
retrieval errors (see Section IX), results for the case of scaled-up
vegetation density should be interpreted as a worst case
scenario of land surface heterogeneity and vegetation density
encountered over only limited portions of the globe. Hydros
soil moisture algorithms will undergo continued evolution and
refinement prior to Hydros launch, based on a combination of
OSSE results, further analyses, and data from ongoing airborne
field campaigns. Given the generally large contribution of
retrieval biases to overall RMSE (e.g., see Fig. 7), it may be
possible to improve the accuracy of retrieved soil moisture via
calibration of retrieval model parameters.

In this analysis, soil moisture products were simulated for
three different retrieval algorithms (Section VII), each requiring
a different amount of ancillary soil and vegetation information.
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Within the United States Southern Great Plains, the overall im-
pact of captured error sources on the accuracy of 36-km soil
moisture retrievals is between 2.0% and 4.5% volumetric for all
three retrieval algorithms (Fig. 5). The impact, however, is more
acute for heavily vegetated footprints (Fig. 6).

To study these areas in greater detail, the OSSE was repeated
for the case of artificially scaled values (by a factor of three).
The case represents a worst case scenario in which land
surface heterogeneity—specifically vegetation optical depth
variability—is synthetically increased to illuminate the impact
of sub-footprint-scale heterogeneity on retrieval accuracy.
Retrieval results for the artificially scaled case demonstrate
positive biases at high levels [Fig. 7(b)]. Despite relatively
low spatial density ( 1% of the basin), failure to account for the
impact of inland water on soil moisture estimates contributes
significantly to this bias (Fig. 8). The remaining positive bias is
due to aggregation impacts associated with applying retrieval
algorithms at a footprint-scale (36-km) that is much coarser
than the underlying 1-km resolution of the geophysical fields
used to force the OSSE (Fig. 9). Measurement noise and sim-
plifying retrieval assumptions appear to play a lesser relative
role.

Aggregation impacts are particularly strong at high when
using algorithm A, which derives 36-km soil and vegetation
values based on the direct aggregation of 1-km fields. For

kg m , utilizing either regression (algorithm C) or the simul-
taneously fitting of parameters to and observations (al-
gorithm B) to derive effective footprint-scale appears to offer
a partial correction for aggregation errors (Figs. 8). Algorithm
B utilizes an alternative strategy and derives effective 36-km

values based on numerical fitting to and obser-
vations. Negative biases in effective derived in this manner
partially counteracts the prevailing positive bias in soil mois-
ture retrievals (Fig. 10) and may represent a preferential strategy
for aggregating heterogeneous fields up to footprint-scale
resolutions. Consequently, strategies that solve for effective
values based on multipolarization observations (e.g., algorithms
B and C) may have some advantages for highly heterogeneous
footprints. However, more information is needed to determine
how robust these approaches, particularly the empirical vege-
tation correction strategy in algorithm C, will be in real opera-
tional environments.

The OSSE also clarifies the potential of two operational data
processing strategies to reduce the impact of land surface aggre-
gation errors. Given knowledge of fractional water coverage, the
impact of nonresolved water bodies on soil moisture retrievals
can be effectively filtered using (23) (Fig. 11). However, re-
maining biases in soil moisture retrievals from algorithm A are
problematic in the sense that they cannot be corrected via simple
alternative strategies for aggregating static soil and vegetation
properties up to the footprint-scale (Section IX-B and Fig. 12).
More study on alternative aggregation techniques is required.

Results from this experiment will be used to modify opera-
tional data processing and soil moisture retrieval strategies for
Hydros soil moisture products—particularly in areas of dense
vegetation and widespread inland water. This will be done with
the eventual goal of maximizing the global extent over which
sufficiently accurate soil moisture retrievals are possible. Given

the operational availability of higher resolution Hydros radar
measurements, future work will also focus on the potential for
addressing landscape heterogeneity and aggregation effects
using simultaneous backscatter observations.
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