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ABSTRACT

Data assimilation approaches require some type of state forecast error covariance information in order
to optimally merge model predictions with observations. The ensemble Kalman filter (EnKF) dynamically
derives such information through a Monte Carlo approach and the introduction of random noise in model
states, fluxes, and/or forcing data. However, in land data assimilation, relatively little guidance exists
concerning strategies for selecting the appropriate magnitude and/or type of introduced model noise. In
addition, little is known about the sensitivity of filter prediction accuracy to (potentially) inappropriate
assumptions concerning the source and magnitude of modeling error. Using a series of synthetic identical
twin experiments, this analysis explores the consequences of making incorrect assumptions concerning the
source and magnitude of model error on the efficiency of assimilating surface soil moisture observations to
constrain deeper root-zone soil moisture predictions made by a land surface model. Results suggest that
inappropriate model error assumptions can lead to circumstances in which the assimilation of surface soil
moisture observations actually degrades the performance of a land surface model (relative to open-loop
assimilations that lack a data assimilation component). Prospects for diagnosing such circumstances and
adaptively correcting the culpable model error assumptions using filter innovations are discussed. The dual
assimilation of both runoff (from streamflow) and surface soil moisture observations appears to offer a
more robust assimilation framework where incorrect model error assumptions are more readily diagnosed
via filter innovations.

1. Introduction

Recent advances in the development of sequential
land data assimilation techniques have demonstrated
that remote sensing observations of surface soil mois-
ture can improve the dynamic representation of root-
zone soil moisture in hydrologic models (Houser et al.
1998; Walker et al. 1999; Montaldo et al. 2001; Reichle
and Koster 2005). However, much of the available evi-
dence is based on identical twin experiments using syn-
thetically generated, and artificially perturbed, mea-
surements (e.g., Reichle et al. 2002a,b; Crow 2003).
These experiments, while useful diagnostic tools for

evaluating filter efficiency, typically simplify or avoid a
number of key complexities facing operational efforts
to assimilate spaceborne soil moisture observations
(Margulis et al. 2002; Crow and Wood 2003; Reichle
and Koster 2004). One common assumption in syn-
thetic experiments is that the source and magnitude of
model errors are perfectly known in a statistical sense.
In reality, error in hydrologic model predictions origi-
nates from a wide variety of sources and manifests itself
within multiple model state variables. Consequently,
complete error information required by sequential data
assimilation filters is almost never available in opera-
tional settings. Statistical analysis of filter innovations,
defined as the observed difference between predicted
and actual observations, provides a valuable tool for
diagnosing the misspecification of model error (Dee
1995; Reichle and Koster 2002). Several online proce-
dures for estimating model error parameters—based on
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the analysis of filter innovations—have been intro-
duced for geophysical models (e.g., Mitchell and
Houtekamer 1999). However such adaptive filtering
techniques have not been widely applied to hydrologic
models.

The ensemble Kalman filter (EnKF) is a sequential
data assimilation technique that dynamically updates
model error covariance information by generating an
ensemble of model predictions consisting of individual
model realizations independently perturbed by some
type of assumed model error. State forecast error co-
variance information is sampled from this ensemble
and used to update model state predictions via the Kal-
man filter update equation. Model error assumed in
order to generate the ensemble may not be an accurate
reflection of actual model error. If this is the case, the
accuracy of predictions made by the filter will be de-
graded. Relative to other types of geophysical models,
errors in hydrologic models originate from a particu-
larly wide range of sources including poorly specified
initial conditions, errors in specified atmospheric forc-
ings, inappropriate parameter choices, neglect of sub-
grid land surface heterogeneity, and inaccurate model
physics. The flexibility of the ensemble Kalman filter
with regard to the type and source of model error is
frequently cited to support its use in hydrologic data
assimilation (see, e.g., Crow and Wood 2003). How-
ever, such flexibility cannot be fully exploited if the
structure and source of model errors is not constrained
in some realistic way. In addition, while the sensitivity
of the extended Kalman filter (EKF) to incorrect model
error specification has been frequently studied since
Ljung (1979), relatively little is currently known about
the impact of poorly specified model error on the ap-
plication of the EnKF to hydrologic problems.

This analysis is based on using the EnKF to carry out
a series of synthetic identical twin experiments whereby
errors used to generate hydrologic model ensembles
(and calculate state forecast error covariance informa-
tion for the EnKF) are statistically distinct from errors
used to originally perturb the model. The impact of
inaccurate model error assumptions on the quality of
integrated root-zone soil moisture predictions made by
the EnKF is evaluated, and the potential for adaptively
improving filter results based on the statistical analysis
of filter innovations is examined.

2. Approach

The approach is based on a series of synthetic filter-
ing experiments aimed at the assimilation of daily
spaceborne surface soil moisture retrievals into a hy-
drologic model operating over the approximately 1000-

km2 Big Cabin Creek watershed in northeastern Okla-
homa. Figure 1 contains a schematic representation of
the experimental approach. Synthetic identical twin ex-
periments are based on designating a single hydrologic
model realization as a “truth run” that produces a set of
“truth states” (i.e., soil moisture and temperature val-
ues at various depths) and, when processed through an
observation operator, “truth observations” (i.e., surface
soil moisture or corresponding observed variable). Be-
cause of modeling and observing errors, neither quan-
tity can be known with perfect certainty. In a synthetic
twin experiment, this uncertainty is reflected through
the synthetic application of modeling error to truth
states (to produce “modeled states”) and synthetic ob-
serving errors to truth observations (to produce “actual
observations”). This error will be referred to as “actual
error.” “Open loop” simulations are those in which ac-
tual errors are implemented but not corrected. The
EnKF methodology attempts to correct for the impact
of actual model error (i.e., correct modeled states back
to truth states) by assimilating observations related to
model states. It does so by assuming a given statistical
structure for assumed model error and using this as-
sumption to construct a Monte Carlo–based ensemble
of model state and observation predictions from which
the error covariance information required by the Kal-
man filter update equation is estimated. The best filter-
ing results will be obtained when the assumed error
used to construct the ensemble is an accurate statistical
representation of the actual error used to originally per-
turb the truth simulation. However, in real operational
settings, little information may be available concerning
the statistical properties of actual model error. This
lack of information may degrade the ability of the filter
to correct model error.

FIG. 1. Schematic diagram of the synthetic filtering experiment.
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This article utilizes the synthetic twin methodology
outlined in Fig. 1 to study cases in which “assumed
model error” on the left-hand side of Fig. 1 differs
statistically from “actual model error” above it. The
analysis implicitly neglects the impact of incorrect as-
sumptions concerning observing error by assuming ob-
servation error statistics to be perfectly known. Such
reductionism is necessary for an initial examination of
these issues. However, an integrated analysis capturing
the interplay between misspecified observing and mod-
eling errors will eventually be necessary. Specific as-
pects of our methodology are discussed in the following
subsections.

a. The ensemble Kalman filter

The ensemble Kalman filter is based on the genera-
tion of an ensemble of model predictions to estimate
the state forecast covariance information required by
the standard Kalman filter for the updating of model
predictions with observations (Evensen 1994; Burgers
et al. 1998; Reichle et al. 2002a). The EnKF can be
generalized using a state space representation of model
prediction and observation operators. Take Y(t) to be a
vector of land surface state variables at time t. The
equation describing the evolution of these states, as
determined by a land surface model F, is given by

dY
dt

� F�Y, w�, �1�

where w relates errors in model physics, parameteriza-
tion, and/or forcing data and is taken to be mean zero
with a covariance Cw. In this analysis, Y will contain all
the soil water and energy storage (i.e., soil moisture and
soil temperature) states of the hydrologic model. The
goal of the filtering problem is to constrain these fore-
casts using a set of observations that are related to the
model states contained in Y. Let the operator M rep-
resent the observation process that relates Y to the
actual measurements taken at time tk:

Zk � M�Y�tk�, vk�, �2�

where vk represents Gaussian measurement error with
covariance C� and Zk is an m-dimensional vector con-
taining a set of observations. Here, both streamflow
observations and surface soil moisture retrievals (osten-
sibly from a remote sensing source) will be considered
for Z. The EnKF is initialized by the introduction of
synthetic Gaussian error into initial conditions and gen-
erating an ensemble of model predictions using Eq. (1).
At the time of measurement, predictions made by the
ith model replicate are referred to as the state forecast
Yi

�. If F and M are linear and all errors are additive,

independent, and Gaussian, the optimal updating of Yi
�

by the measurement Zk is given by

Y�
i � Y�

i � Kk�Zk � vk � Mk�Y�
i �� �3�

and

Kk � �CYM�CM � C���1�t�tk
, �4�

where CM is the covariance matrix of the forecasted
observations Mk(Yi

�) and CYM is the cross-covariance
matrix linking the forecasted observations with the
state variables contained in Y i

�. Both covariances are
statistically estimated from all individual ensemble re-
alizations and calculated around the ensemble mean.
Here Yi

� signifies the updated or analysis state repre-
sentation. Filter predictions are obtained by averaging
analysis representations across the model ensemble. Of
particular interest here are modeling errors represented
by w in (1) and the impact of making inaccurate as-
sumptions concerning their source and magnitude. One
potential diagnostic tool is the filter innovation (	k),
defined as

�k � 
Zk � Mk�Y�
i ��, �5�

where the brackets represent ensemble averaging. If all
the assumptions underlying the optimality of the EnKF
filter (e.g., fully linear models and additive Gaussian
error) are met and w is perfectly represented in a sta-
tistical sense, then 	k should be mean zero, temporally
uncorrelated, and have a variance of m�1(CM � C�).
Or, alternatively the variable �k, defined as

�k � m�1�k
T�CM � C��

�1�k �6�

should be mean one and temporally uncorrelated (Dee
1995). Normalized innovations have value as a diagnos-
tic tool since various statistical choices for modeling
errors used to generate the forecast ensemble can be
evaluated based on how closely the resulting innovation
time series statistics match these values. Being essen-
tially the normalized second moment of 	k, the mean of
�k over time provides an integrated measure of the
deviation of innovation mean and variance quantities
from theoretical expectations. For instance, overesti-
mation (underestimation) of model error will generally
lead to a time series of � with a mean less than (greater
than) one. Adaptive tuning strategies exploit the op-
erational availability of innovation statistics by tuning
assumed levels of model error such that the statistical
properties of �k are optimized (Mitchell and Houteka-
mer 1999).

JUNE 2006 C R O W A N D V A N L O O N 423



b. TOPLATS hydrologic modeling

Land surface modeling is based on TOPMODEL-
based Land Atmosphere Transfer Scheme (TOPLATS;
Famiglietti and Wood 1994) predictions. Baseline algo-
rithms for this particular version of the TOPLATS are
found in Peters-Lidard et al. (1997). TOPLATS rep-
resentation of cold season processes is described in
Pauwels and Wood (1999). The expansion of the
TOPLATS soil water balance approach from a two- to
four-layer model can be found in Crow (2001, 2003).
The top three soil layers are TOPLATS surface-zone
soil moisture (
sz) predictions are based on the linear
combination of two dynamic model state variables: the
fraction of the land surface saturated from below by the
water table ( fw) multiplied by the soil’s saturation ca-
pacity (
sat) and the surface soil water content in non-
saturated portions of the basin (
unsat):

�sz � �sat fw � �unsat�1 � fw�. �7�

The calculation of surface-zone soil moisture using a
linear combination of a nonsaturated surface soil mois-
ture state and a dynamic fraction representing surface
saturation is a common modeling feature for many land
data assimilation studies (see, e.g., Walker and Houser
2001; Pauwels et al. 2001; Reichle et al. 2002b; Crow
2003; Crow and Wood 2003; Reichle and Koster 2005).
In TOPLATS, fw is calculated by assuming subbasin-
scale spatial variability in water table depth z is driven
solely by variations in the local soils-topographic index
(STI) defined as

STI � ln�aT�T tan��, �8�

where a is area drained, T is soil transmissivity, and � is
local slope. Variations in STI are related to variations
in local water table depth (z) by

z � z � f�1�STI � STĪ�, �9�

where the overbar in (8) and (9) represents spatial av-
eraging of quantities within the watershed, and f is the
vertical decay of saturated hydrologic conductivity.
Changes in basin-averaged water table depth z are pre-
dicted through an areally lumped balance of deep soil
drainage, upward diffusion from the water table, direct
transpiration from the water table, and base flow (Pe-
ters-Lidard et al. 1997). Drainage and diffusion fluxes
in unsaturated portions of the basin are calculated using
a finite-difference numerical approximation to the
Richards equation.

Since z � � 0 in (9) indicates surface saturation, the
saturated fraction of the basin can be calculated as

fw � 1 � F �zf � STĪ�, �10�

where F is the cumulative density function for STI, typi-
cally determined from high-resolution soil and topo-
graphic maps. Runoff is modeled as a combination of
saturation excess runoff (the product of rainfall inten-
sity and fw) and a separate parameterization of infiltra-
tion excess runoff. Base flow Q occurs solely from the
saturated zone and is modeled as

Q � Qo exp��f z�. �11�

Here, the statistical version of TOPLATS is used,
which invokes a type of hydrologic similarity and as-
sumes that all pixels with the same STI will have the
same hydrologic response to atmospheric forcings (i.e.,
precipitation and potential evaporation). Subcatch-
ment-scale variations in rainfall and micrometeorologi-
cal forcings are neglected and separate TOPLATS cal-
culations are run on discrete intervals of the STI distri-
bution derived from high-resolution soil texture maps
and a U.S. Geological Survey (USGS) digital elevation
model (DEM). Basin-averaged hydrologic responses
are calculated through the weighted averaging of re-
sults for each discrete STI interval.

c. Site location and model evaluation

All hydrologic modeling was based on application of
TOPLATS to the Big Cabin Creek watershed in north-
eastern Oklahoma from 1 October 1996 to 30 Septem-
ber 1999. The watershed has very little hydrologic regu-
lation or diversion and is located in a region that has
seen extensive fieldwork aimed at the development of
remote sensing retrieval algorithms for surface soil
moisture. Upstream of the USGS gauging station near
Big Cabin, Oklahoma, the watershed has an area of
approximately 1170 km2, which is roughly equivalent to
the spatial resolution defined through the 3-dB antenna
gain (Drusch et al. 1999) of current and next-generation
spaceborne radiometers designed to retrieve surface
soil moisture (Entekhabi et al. 2004). TOPLATS pre-
dictions within the basin were forced by meteorological
observations (i.e., rainfall, air temperature, incoming
radiation, wind speed, and relative humidity) from the
Vinita, Oklahoma mesonet site located near the center
of the basin. Soil hydraulic parameters were based on
the dominant soil texture found with the basin (loam)
and the soil texture/hydraulic parameter lookup table
presented in Rawls et al. (1982). However, values of 
sat

and surface saturated hydrologic conductivity (Ksat)
were tuned slightly (from 0.462 to 0.420 and 3.67 � 10�6

to 1.60 � 10�6 m s�1, respectively) in order to match
local soil moisture observations. Vegetation character-
istics were varied on a monthly basis according the typi-
cal seasonality of the dominant land-cover type in the
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basin (grassland). Values for f and Qo ( f � 3 and Qo �
100 m3 s�1) were obtained through manual calibration
of TOPLATS against USGS streamflow observations.

Comparisons between calibrated TOPLATS results
and observed streamflow and surface soil moisture are
shown in Fig. 2a. Streamflow observations and predic-
tions plotted in Fig. 2a are 30-day moving averages of
daily values. TOPLATS soil moisture predictions plot-
ted in Fig. 2b are for the interval of the STI that cor-
responds to local topography near the Vinita, Oklaho-
ma mesonet site. Since Oklahoma mesonet soil mois-
ture observations are not available prior to 2002, soil
moisture intercomparisons are based on simulations
conducted during a later time period (1 October 2002 to
30 September 2003). A good calibrated fit was achieved
to both streamflow and surface soil moisture except for
soil moisture predictions between December 2002 and
April 2003. During this time period, TOPLATS system-
atically under predicts surface soil moisture by up to
0.10 cm3cm�3. This error is likely due to the misrepre-
sentation of the basin-averaged water table depth (z)
by TOPLATS and provides a good example of the im-
pact on surface soil moisture dynamics of inaccurately
modeling saturation-zone dynamics.

d. Modeling error approach

As illustrated in (7), surface soil moisture predictions
in TOPLATS are driven by two key dynamic state vari-
ables: 
unsat and fw. Short-term fluctuations in 
unsat are
due to rainfall flux at the top of the soil column and the
cumulative effects of surface evaporation, drainage,
and diffusive fluxes between the surface zone and
deeper soil moisture states. In contrast, fw is based on
deeper saturation-zone dynamics and the lateral redis-
tribution of water. Consequently, random errors in pre-
cipitation, evaporation, infiltration, and saturation-
zone recharge impact TOPLATS soil moisture predic-
tions via contrasting processes acting at the top and
bottom of the soil column. Here, three different error
sources are considered. Model error at the bottom of
the soil column is represented by adding mean-zero
additive Gaussian noise to the catchment-averaged wa-
ter table depth:

z� � z � �z �z � N�0, wz�, �12�

representing the net impact of model errors in base
flow, upward diffusive fluxes, and recharge to the water
table. Synthetically perturbed rainfall forcing is gener-
ated by multiplying actual rainfall by a mean-unity log-
normal random variable:

p� � �pp �p � LogN�1, wp�. �13�

Surface soil moisture errors between rainfall events are
captured by the addition of random Gaussian error di-
rectly to 
unsat:

��unsat � �unsat � ��unsat
��unsat

� N�0, w�unsat
�,

�14�

which represent the net impact on soil moisture of mod-
eling errors in bare soil evaporation, surface drainage,
and the upward diffusive flux of soil water. Represent-
ing model error via some combination of noise applied
to soil moisture states and rainfall model forcing is a
common practice when applying the EnKF to the case
of assimilating real observations into a hydrological
model (e.g., Crow 2003; Reichle and Koster 2005). For
simplicity all three perturbations (� z, �p, �
unsat

) are
modeled as mutually independent and temporally un-
correlated in time.

The experimental methodology (see section 2 and
Fig. 1) is based on designating a single, unperturbed
model realization as truth. A statistical representation
of actual model error is specified by selecting “actual”

FIG. 2. Comparison of TOPLATS (a) streamflow predictions to
USGS observations (both smoothed within a 30-day moving av-
erage window) and (b) volumetric surface (0–5 cm) soil moisture
predictions against Oklahoma Mesonet observations at the
Vinita, OK, site. Mesonet soil moisture data are unavailable for
the main analysis period of October 1996 to October 1999.
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values for the statistical parameters describing its com-
ponents (wz, wp, and w
unsat

). Using these error param-
eters and (12)–(14), a TOPLATS open-loop simulation
is generated that represents the uncorrected impact of
actual model error on the accuracy of hydrologic pre-
dictions (see “modeled states” in Fig. 1). Errors present
in the open-loop simulations are then filtered via the
implementation of the EnKF to assimilate (on a daily
basis) values of “actual soil moisture observations” gen-
erated from the original truth simulation (Fig. 1). The
EnKF filtering methodology is based on an assumed
statistical representation of actual modeling errors. As-
sumed values of wz, wp, and w
unsat

are used with (12)–
(14) to randomly perturb 
unsat, z, and rainfall and cre-
ate an ensemble of model predictions that, in turn, is
sampled to derive the state forecast error covariance
information required by the Kalman filter update Eq.
(3). As noted above, the statistical properties of as-
sumed model error driving the ensemble generation
may or may not accurately represent actual errors used
to perturb the original truth simulations. The focus of
the analysis will be on instances in which they do not.

3. Results

Values plotted in Fig. 3 are based on daily root-
mean-square (rms) differences between truth model
simulations and both the open-loop (i.e., truth simula-
tions perturbed by actual error) and EnKF filtering
cases. EnKF results are based on the case in which both
the source (TOPLATS z predictions) and statistical

magnitude (wz � 0.025 m h�1) of actual modeling error
is assumed to be perfectly known. Consequently, as-
similating daily surface soil moisture observations (with
an assumed absolute volumetric accuracy of 2%) using
the EnKF can substantially correct open-loop model
errors in TOPLATS root-zone (40 cm) soil moisture
predictions.

Assuming knowledge of modeling error is limited
only to its source in z, Fig. 4a examines how normalized
error in 40-cm soil moisture results (defined as the rmse
for EnKF results normalized by the open-loop rmse)
varies as a function of the assumed standard deviation
of �z (i.e., wz) used to perturb TOPLATS z predictions
in (12). Each point on the line in Fig. 4 relates the
temporally lumped root-zone rmse and innovation sta-
tistics calculated when running the EnKF with a par-
ticular (constant) choice for assumed model error pa-
rameters during the 3-yr period starting in October
1996. The vertical line in Fig. 4 represents the actual
value of wz used to originally perturb the model simu-
lations. While overestimating actual model error has

FIG. 4. Impact on (a) the rmse accuracy of EnKF root-zone soil
moisture predictions and (b) the mean normalized innovation (�)
when the magnitude of assumed model error in z is varied.
Dashed horizontal line at 1 indicates theoretical expectation for �.

FIG. 3. Improvements in integrated root-zone (0–40 cm) soil
moisture predictions when model error is perfectly represented
and surface soil moisture observations are assimilated into
TOPLATS using the EnKF.
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little impact on the accuracy of root-zone soil moisture
predictions, underestimating the actual error magni-
tude sharply reduces the accuracy of filtered results and
the overall value of remotely sensed surface soil mois-
ture observations for constraining TOPLATS root-
zone soil moisture predictions. The critical issue for our
analysis is whether such poor performance can be ac-
curately diagnosed using available filter innovations.
Figure 4b displays the temporal average of filter inno-
vations (�) associated with the same range of assumed
model errors. Using the exact actual error of wz � 0.025
m h�1 leads to an � slightly greater than one. This is
consistent with previous EnKF-based studies that have
noted that, even in cases where model error is perfectly
statistically represented, � tends to be slightly greater
than one due to the impact of nonlinear physics in land
surface models (Reichle et al. 2002b; Crow 2003). Nev-
ertheless, the underestimation of actual model error, as
well as associated negative impacts on root-zone soil
moisture accuracy, is clearly detectable via excessively
large filter innovations in Fig. 4b. That is, given a time
series of � values and a correct assumption concerning
the dominant source of modeling error, a properly con-
structed adaptive filter should be able to converge on a
level of assumed modeling error that leads to accept-
able EnKF root-zone soil moisture predictions.

a. Impact of incorrect model error assumptions

Adaptive tuning using � becomes problematic if an
incorrect assumption is made concerning the ultimate
source of modeling error. Figure 5 displays the case
where model error is actually caused by random per-
turbations to surface soil moisture 
unsat (w
unsat

� 0.01
cm3 cm�3 h�1) but, for the purposes of generating the
EnKF for assimilating surface soil moisture, error is
assumed to be caused by fluctuations in mean water
table depth. Because the source of model error is mis-
specified when assimilating soil moisture, normalized
rmse values for EnKF root-zone soil moisture predic-
tions rise as assumed error in z is increased. However,
observed � levels decrease (toward unity) as assumed
error in z increases. Consequently, adaptive tuning
would increase wz in an ill-advised attempt to lower �
toward unity (solid line in Fig. 5b). Such misguided
tuning will severely reduce the rmse accuracy of 40-cm
soil moisture predictions (solid line in Fig. 5a) produced
via the assimilation of surface soil moisture.

Soil moisture assimilation results in Fig. 5 illustrate
the impact of representing model error using random
perturbations in z when, in reality, modeling error
originates from the inaccurate representation of pro-
cesses acting along the top of the soil column. Results in
Fig. 5 are replotted as the solid line in Fig. 6a by graph-

ing the y axis of Fig. 5b against the y axis of Fig. 5a for
the entire range of assumed model error (the x axis in
Fig. 5). Results in Fig. 6a are for the case of actual error
in z (wz � 0.025 m h�1) and a range of assumed error
magnitudes in z, 
unsat, and rainfall. For simplicity, both
actual and assumed model error are limited to a single
source.

Figures 6b and 6c are analogous except for actual
error in 
unsat (w
unsat

� 0.01 cm3 cm�3 h�1) and rainfall
(wp � 1), respectively. The vertical line indicates the
location of the � � 1 line that an adaptive filter would
attempt to converge on via iterative modifications to
assumed error parameters. Crosses mark the closest
possible approach for the adaptive filter to this opti-
mum value. Figure 6 highlights two potential obstacles
to the successful implementation of an adaptive filter.

First, there exists the possibility of a spurious local
minimum where, because of an incorrect assumption
concerning the source of modeling error, the tuning of

FIG. 5. For the cases of independently assimilating both soil
moisture and runoff, impact on (a) the rmse accuracy of EnKF
root-zone soil moisture predictions and (b) mean normalized in-
novations (�) when the magnitude of assumed model error in z is
varied and actual model error is in 
unsat. Dashed horizontal line
at 1 indicates theoretical expectation for �.
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the wrong error type to move � toward unity leads to
progressively worse filter predictions. See, for example,
the case of assumed error in z and rainfall in Fig. 6a
where actual error is in 
unsat. In both cases, tuning the
wrong error source to produce better innovation statis-
tics leads to a steady reduction in the accuracy of EnKF
root-zone soil moisture predictions. The application of
an adaptive filter in such cases will actually worsen
root-zone soil moisture predictions relative to what is
possible without data assimilation (i.e., a normalized
error of one on the y axis in Fig. 6). This interpretation
is supported by Table 1, which plots the rmse for opti-
mal innovation statistics—the closest approach of
curves in Fig. 6 to � � 1 (indicated by crosses). If 
unsat

is correctly identified as the source of modeling error,
adaptive tuning will lead to a relative reduction of 25%

in modeling error. However, incorrectly choosing to
tune innovations via adjustments to either z or rainfall
error parameters results leads to EnKF predictions that
are less accurate than their respective open-loop cases.

A potential solution to this problem is to perform a
broad enough optimization during adaptive filtering
such that the possibility of all three sources of model
error is accounted for. That is, ensuring that the adap-
tive filter is able to find the model error type associated
with globally optimal innovation statistics. However,
even if a powerful enough optimization scheme could
efficiently locate such a global minimum, a second un-
desirable possibility for adaptive filtering is that the
best innovative statistics (for all three possible error-
type assumptions) is associated with optimization of the
wrong error type. In this case the best obtainable inno-
vation statistics would not reflect the correct error rep-
resentation. For instance, in Fig. 6b, the best 40-cm soil
moisture rmse results are realized by tuning rainfall
error parameters—the correct error source. However,
better innovation statistics (but reduced root-zone soil
moisture accuracies) arise when either z or 
unsat error
parameters are tuned. The parenthetical values in
Table 1 represent the closest approach of � to unity
obtainable for each particular assumption concerning
the source of modeling error. While the lowest rmse for
40-cm soil moisture is always obtained by assuming the
correct error source, an incorrect error assumption can
lead to as good, or better, innovation statistics.

b. Sensitivity to error magnitude

One concern is the potential sensitivity of results to
rather arbitrary choices made concerning the magni-
tude of actual observing and modeling errors. To ex-
amine sensitivity to assumptions concerning the magni-
tude of observation and modeling errors, results were
also generated (but not shown) for the cases of doubled
error (from 2% to 4% volumetric) in daily surface-zone
soil moisture retrievals and for the cases of baseline 2%
soil moisture measurement error and both doubled and
tripled values of modeling errors (i.e., w
unsat

, wz, and

FIG. 6. Relationship between mean normalized innovations (�)
and normalized EnKF-based root-zone soil moisture predictions
for the case of actual error in model (a) surface soil moisture
predictions, (b) rainfall forcing, and (c) water table depth predic-
tions for the case of assimilating surface soil moisture. Assumed
model error for each is varied according to both its source and
magnitude.

TABLE 1. Normalized 40-cm soil moisture rmse for calibrated
ENKF results (assimilating surface soil moisture) for various com-
binations of assumed and actual error types. Error magnitudes
were calibrated such that � is as close to one as possible. The best
(i.e., closest to unity) � values obtained during calibration are
given in parentheses.

Assume: 
sz Assume: rainfall Assume: z

Truth: 
sz 0.77 (1.00) 1.01 (2.06) 1.62 (1.49)
Truth: rainfall 0.45 (1.00) 0.31 (1.19) 0.45 (1.05)
Truth: z 0.65 (1.00) 0.54 (1.37) 0.43 (1.00)
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wp). As expected, increased observation errors tended
to move normalized rmse for EnKF predictions toward
unity as increased weight is shifted to model open-loop
predictions. However, there was no qualitative change
in the appearance or interpretation of results. Baseline
choices for modeling errors used in this analysis led to
rms open-loop errors in root-zone soil moisture predic-
tions on the order of 0.5% to 3% volumetric (Fig. 3).
Doubled and tripled modeling error led to slightly less
sensitivity to the selection of assumed error source (i.e.,
column to column variations along a given row of Table
1 are reduced) but did not qualitatively change results.

c. Impact of diffuse error sources

Results in Figs. 3–6 are all based on synthetic simu-
lations where actual (and assumed) modeling error is
intentionally restricted to a single source. In reality,
land surface modeling errors will likely arise from a
broad range of sources. Figure 7 plots results for the
case where actual model error arises simultaneously
from additive noise in z, 
unsat, and multiplicative rain-
fall noise (wz � 0.025 m h�1, w
unsat

�0.01 cm3 cm�3 h�1,
and wp � 1.0), while assumed error is restricted, in turn,
to only one of these three error sources and tuned using
�. This is done to mimic the likely case in operational
settings where assumed model error does not fully char-
acterize the true complexity of actual modeling er-
ror(s). Calibration results in Fig. 7 are well behaved in
the sense that adjusting error magnitudes to force mean
normalized innovations closer to unity generally leads
to lower normalized error. That is, the spurious local
minimum problem noted in Fig. 6 is largely avoided.
However, in a global sense, there remains the problem
that using innovation statistics to choose the error type
(and magnitude) that leads to the best innovation sta-
tistics does not always ensure the best 40-cm soil mois-
ture predictions. Note that the error source whose tun-
ing produces the best innovation statistics (surface soil
moisture) actually leads to the poorest filter output
(i.e., highest normalized rmse), while the error source
whose optimized innovation mean is furthest from one
(rainfall) produces the best 40-cm soil moisture results.

d. Innovation temporal correlation

In addition to the sampled mean of �k, the temporal
correlation coefficient of 	k (�	) provides a diagnostic
variable on which to base adjustments to assumed lev-
els of model error. If the EnKF is operating in accor-
dance with its underlying assumptions, including an ac-
curate representation of model error, then the 	k time
series should be temporally uncorrelated (�	 � 0). A
correlated time series can be taken as evidence that

model errors are being improperly represented in the
filter. To determine if some of the adaptive filtering
difficulties encountered in Fig. 6 and Table 1 can be
addressed using this additional diagnostic, results in
Table 1 were regenerated in Table 2 by tuning the
EnKF so that the absolute value of �	 was minimized.
Intercomparison of results in Tables 1 and 2 reveals
that calibrations based on �	 (Table 2) and � (Table 1)
yield very similar results. In particular, it does not ap-
pear the �	-based calibration avoids the adaptive filter-
ing problems noted in Table 1. For instance, as in the
case of optimizing �, tuning z errors (when the actual
error source is noise in 
unsat predictions) to minimize

FIG. 7. Relationship between mean normalized innovations (�)
and normalized EnKF-based root-zone soil moisture predictions
for the case of actual error is distributed between model surface
soil moisture predictions, rainfall forcing, and water table depth
predictions, and assumed model error is limited to a single source.

TABLE 2. Normalized 40-cm soil moisture rmse for calibrated
ENKF results (assimilating surface soil moisture) for various com-
binations of assumed and actual error types. Error magnitudes
were calibrated such that �	 is as close to zero possible. The best
(i.e., closest to zero) �	 values obtained during calibration are
listed in parentheses.

Assume: 
sz Assume: rainfall Assume: z

Truth: 
sz 0.71 (0.00) 1.14 (0.21) 1.62 (0.03)
Truth: rainfall 0.43 (0.00) 0.31 (0.04) 0.45 (0.00)
Truth: z 0.64 (0.00) 0.54 (0.17) 0.37 (0.00)
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�	 leads to root-zone soil moisture errors that exceed
the open-loop case (i.e., normalized errors greater than
one). In addition, for the case of actual error in rainfall,
better �	 statistics are obtainable via calibration of the
wrong error parameters, wz and w
unsat

, versus tuning of
the rainfall error parameter. As a result, even a perfect
global optimizing algorithm will be unable to converge
on the error source associated with the best root-zone
soil moisture filtering results. Overall, the close corre-
spondence between results in Tables 1 and 2 implies
that �	 is too closely tied to � to serve as a valuable
independent diagnostic for accurately constraining hy-
drologic modeling errors.

e. Value of ancillary runoff observations

One potential solution for adaptive filtering prob-
lems is constraining EnKF results with additional ob-
servations. In addition to the assimilation of surface soil
moisture, Fig. 5 also examines the case of assimilating
runoff observations. Runoff magnitudes are assumed
known from streamflow observations within a relative
accuracy of 20% and the basin is assumed small enough
such that the time lag between runoff generation and
streamflow observations can be safely neglected. Ac-
tual error is assumed to be due to random noise in 
unsat

predictions and assumed error to variations in z. While
increasing the magnitude of error in z improves the
statistics for soil moisture innovations, it makes runoff
innovations worse (i.e., moves the dashed line away
from one in Fig. 5b). If streamflow observations are
available, this incapability will provide a critical diag-
nostic that allows data assimilation systems to avoid the
pitfall associated with adaptively tuning the wrong er-
ror type within a land surface model (section 3a). By
strongly fluctuating z, the filter can (wrongly) induce
sufficient variability in 
sz such that 
sz innovations will
approach a mean of one. However, such excessive
variations in z will also induce excessive background
spread in the model-predicted runoff ensemble. This
excessive spread is detectible in filter innovations if
runoff observations are available and jointly consid-
ered.

The most natural way to consider runoff observations
is to include them in the observation vector and jointly
assimilate both runoff and surface soil moisture obser-
vations. Figure 8 replots Fig. 6 for the case of assimi-
lating both surface soil moisture and surface runoff. As
in Fig. 6, actual and assumed error is assumed to be
restricted to a single error source, and plotted lines
demonstrate the relationship between mean normal-
ized innovations � and normalized error for a range of
assumed model error. In contrast to Fig. 6, the dual
assimilation of both surface soil moisture and runoff

appears to correct the false global minimum problem.
That is, the best innovation statistics (i.e., the closest
approach of � to one) are associated with correct as-
sumption concerning the type of model error. This is
reiterated in Table 3. Note how, in contrast to Tables 1
and 2, the best-tuned innovation statistics are associ-
ated with the correct error assumption (and thus the
lowest error in EnKF results).

4. Discussion and summary

Because of its Monte Carlo basis, the EnKF can ad-
dress a wide variety of error sources in geophysical
models. This is often cited as a key advantage for its
application to hydrologic models where error can arise
from a range of sources (Crow and Wood 2003). How-
ever, large gaps exist in our knowledge concerning the

FIG. 8. Relationship between mean normalized innovations (�)
and normalized EnKF-based root-zone soil moisture predictions
for the case of actual error in model (a) surface soil moisture
predictions, (b) rainfall forcing, and (c) water table depth predic-
tions and the dual assimilation of both runoff and surface soil
moisture. Assumed model error for each is varied according to
both its source and magnitude.
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magnitude and ultimate source of error in hydrologic
modeling predictions. Consequently, it is reasonable to
expect that the operational application of sequential
data assimilation filters to assimilate remotely sensed
soil moisture will rely heavily on diagnostic tools like
filter innovations to obtain model error statistical infor-
mation. This analysis examines the potential for using
filter innovations to correctly tune model error param-
eters in such a way that EnKF-based predictions of
root-zone soil moisture are optimized.

Results in Table 1 and Figs. 5 and 6 highlight two
fundamental challenges facing adaptive filtering strate-
gies aimed at tuning hydrologic model error parameters
based on surface soil moisture innovation statistics.
First, there exists the potential for spurious local mini-
mums where optimization of the wrong error param-
eter can actually progressively degrade EnKF results to
accuracy levels below what is obtainable for the com-
parable open-loop case (see Fig. 5). Second, globally
optimal innovation statistics do not necessary corre-
spond to the model error parameters that provide the
best EnKF results (Table 1). Consequently, tuning of
soil moisture innovation statistics to globally optimal
levels does not always guarantee optimal EnKF-based
root-zone soil moisture predictions (Fig. 6). Results in
Fig. 6 are based on the relatively simple case where
assumed and actual modeling errors are limited to a sin-
gle source. Figure 7 presents results for a more realistic
case in which actual model error is distributed among a
range of sources and assumed error used to generate
model ensembles (and the EnKF) is limited to only a
single source. The tuning of only a single-error source
(again via soil moisture filter innovations) to represent
a broader range of errors appears to avoid much of
spurious local minimum problem noted in Fig. 6. How-
ever, it remains the case that the best (worst) calibrated
filter innovations are associated with tuning the wrong
(correct) error type and the highest (lowest) error in
EnKF root-zone soil moisture predictions (Fig. 7).

Results also clarify the potential of additional diag-
nostic statistics to detect and correct for impacts asso-

ciated with incorrect model error assumptions. Cali-
brating model error such that the temporal correla-
tion of innovations (�	) was minimized led to results
that were qualitatively similar to calibrating against �
(Tables 1 and 2) and does not resolve the adaptive
tuning difficulties described in section 3a. However, ex-
panding the observation vector to include both surface
soil moisture and surface runoff appears to offer a use-
ful additional constraint on model error. In particular,
the availability of runoff observations allows for the
detection of incorrect model error assumptions and
leads to a more intuitive relationship between filter sta-
tistics and filter performance where the best global in-
novation statistics are associated with the best filtering
performance (Table 3 and Fig. 8). This suggests that the
dual assimilation of runoff and soil moisture will pro-
vide a data assimilation framework that is more ame-
nable to adaptive filtering approaches than systems that
assimilate only surface soil moisture. More research is
required to determine how broadly results can be ex-
trapolated among basins with differing hydrologic, cli-
matic, and geomorphologic characteristics. However,
the hydrologic phenomenon underlying many of the
difficulties described here is the saturation of low soils-
topographic index areas by a rising water table. Conse-
quently, results may be applicable only to basins humid
enough to sustain appreciable levels of saturation-
excess runoff.

For simplicity, perturbations used to simulate various
sources of modeling error were assumed to be mutually
independent and temporally uncorrelated. Both as-
sumptions may qualitatively impact results presented in
section 3. The impact of cross-correlated state pertur-
bations depends on the degree of cross correlation in
combination with the feedback between the respective
model state variables (Ljung 1999). Filter sensitivity to
error misspecification may be enhanced when cross cor-
relation is present but assumed to be absent. Likewise,
temporal autocorrelation in model perturbations can be
modeled using state augmentation procedures (Reichle
et al. 2002a). However, failure to account for existing
autocorrelations can also degrade filter performance.
Finally, it is worth noting that, relative to the approach
employed here, more sophisticated methods for esti-
mating model bias and statistical uncertainty have been
presented in the systems and control literature. Here
the problem is often referred to as filter divergence,
referring to the fact that the ensemble sample drifts
gradually from the true state and no longer produces a
meaningful state forecast. Examples of such techniques
include nonstationary stochastic embedding, model er-
ror modeling based on prediction error methods, and
set membership identification (Reinelt et al. 2002).

TABLE 3. Normalized 40-cm soil moisture rmse for calibrated
ENKF results (assimilating surface soil moisture and runoff) for
various combinations of assumed and actual error types. Error
magnitudes were calibrated such that � is as close to one as pos-
sible. The best (i.e., closest to unity) � values obtained during
calibration are listed in parentheses.

Assume: 
sz Assume: rainfall Assume: z

Truth: 
sz 0.73 (1.00) 1.83 (1.23) 0.83 (1.63)
Truth: rainfall 0.58 (1.18) 0.24 (1.17) 0.47 (1.26)
Truth: z 1.07 (1.58) 0.43 (2.13) 0.40 (1.00)
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While potentially attractive for use in the EnKF, the
computational difficulties associated with implement-
ing these methods for hydrologic forecasting/monitor-
ing problems are considerable and have yet to be ad-
dressed. In addition, the Rauch–Tung–Striebel (RTS)
smoother (Rauch et al. 1965) may provide a way to
check for filter divergence (rather than estimating mod-
eling errors directly) for hydrologic assimilation sys-
tems by comparing the statistics of filter innovations in
the forward and backward sequences of the smoother.
However, in the context of the EnKF it is not trivial to
implement the RTS smoother, and it is not yet clear
how this can be done efficiently (Evensen and van
Leeuwen 2000; van Leeuwen 2001).
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