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ABSTRACT

Current attempts to measure short-term (<1 month) rainfall accumulations using spaceborne radiometers are
characterized by large sampling errors associated with low observation frequencies for any single point on the
globe (from two to eight measurements per day). This degrades the value of spaceborne rainfall retrievals for
the monitoring of surface water and energy balance processes. Here a data assimilation system, based on the
assimilation of surface L-band brightness temperature (T;) observations via the ensemble Kalman filter (EnKF),
is introduced to correct for the impact of poorly sampled rainfall on land surface model predictions of root-
zone soil moisture and surface energy fluxes. The system is evaluated during the period from 1 April 1997 to
31 March 1998 over two sites within the U.S. Southern Great Plains. This evaluation includes both a data
assimilation experiment, based on synthetically generated T, measurements, and the assimilation of real T,
observations acquired during the 1997 Southern Great Plains Hydrology Experiment (SGP97). Results suggest
that the EnKF-based assimilation system is capable of correcting a substantial fraction (>50%) of model error
in root-zone (40 cm) soil moisture and latent heat flux predictions associated with the use of temporally sparse
rainfall measurements as forcing data. Comparable gains in accuracy are demonstrated when actual T, mea-

surements made during the SGP97 experiment are assimilated.

1. Introduction

Over large portions of the globe, the accuracy of
rainfall data is a major source of error for efforts to
monitor and/or predict surface water and energy bal-
ance processes. Rainfall rate measurements are based
primarily on four observational techniques: ground-
based radar, rain gauge observations, satellite-based
infrared and visible observations, and satellite-based
radiometer observations. With the exception of the
United States and Europe, land-based radar systems
are not well developed. Gauge-based networks are
more extensive but still lacking in many tropical and
arid regions of the world (New et al. 2001). Infrared
retrievals from geostationary satellites can provide fre-
guent observations over continental-scale regions, but
the retrieval is based on the use of cloud height as a
surrogate for rainfall rate. As such, rate retrievals are
indirect and prone to error—especially over short tem-
poral scalesand at high latitudes (Huffman et al. 2001).
Spaceborne radiometers offer perhaps the most attrac-
tive option for global-scale coverage, but current
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spaceborne systems [e.g., the Tropical Rainfall Mea-
suring Mission (TRMM) and the Special Sensor Mi-
crowave Imager (SSM/1)] make observations of agiven
point at too infrequent a temporal rate (twice daily) to
provide accurate accumulation estimates at timescales
shorter than monthly. Providing sufficient temporal
sampling to facilitate retrieval of accurate accumula-
tions over finer timescales is a major objective of the
proposed Global Precipitation Mission (GPM) satellite
constellation scheduled to launch in 2007 (Flaming et
al. 2001). Ascurrently envisioned, the system will pro-
vide approximately eight retrievals of rainfall rates per
day for most areas of the globe within a relative ac-
curacy of about 25% (Adams et al. 2002). Because
offline global land surface modeling efforts [see, e.g.,
the Global Land Data Assimilation System (Rodell et
al. 2003, manuscript submitted to Bull. Amer. Meteor.
Soc.) and the United States Air Force Weather Agen-
cy’s Agricultural Meteorological Model (AGRMET)
project] rely heavily on satellite-based observations of
rainfall for forcing data, the improved sampling and
accuracy characteristics of the GPM constellation
should allow for enhanced global-scale monitoring of
surface water and energy balance processes.

Given the long list of observation techniques, and the
absence of any currently viable method without at least
one shortcoming, it is natural that data-fusion strategies
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involving one or more observational technique have de-
veloped. Examples within the United States include the
merging of ground-based radar and rain gauge mea-
surements in Stage-111 precipitation products produced
by regional National Oceanic and Atmospheric Admin-
istration (NOAA) River Forecasting Centersand quilted
into anational Stage-1V product by the National Centers
for Environmental Prediction (see information online at
http://www.emc.ncep.noaa.gov/mmb/staged/). Over re-
gions of the globe not covered by extensive ground-
based radar or gauge networks, the best current source
of rainfall measurements are obtained by merging high-
frequency, but uncertain, infrared rainfall rate retrievals
with more direct, but temporally sparser, spaceborne
radiometer observations (Todd et al. 2001). A merged
1° lat X 1° lon daily (1DD) product based on infrared
retrievals from the Television Infrared Observation Sat-
ellite (TIROS) Operational Vertica Sounder (TOVS)
and the Geostationary Operational Environmental Sat-
ellite (GOES) and passive microwave measurements
from SSM/I is currently being archived as part of the
Global Precipitation Climatology Project (GPCP) (Huff-
man et al. 2001).

Additional opportunities for the fusion of various ob-
servational sources are afforded by the development of
data assimilation systems designed to update dynamic
land surface models with remote observations. A par-
ticularly powerful aspect of these systemsistheir ability
to integrate observations that are only indirectly related
to rainfall. For instance, over lightly vegetated regions
of the globe, L-band surface brightnesstemperature (Ty)
observations can be inverted to produce estimates of
near-surface (5 cm) soil moisture. Potential spaceborne
sources of high-frequency (1-3-day repeat time) global
L-band T, observations in the near future include the
European Space Agency’s (ESA) Soil Moisture and
Ocean Salinity Mission (SMOS) scheduled for launch
in 2006 and the Hydrospheric States (HY DROS) mis-
sion currently slated as a back-up mission in the Na-
tional Aeronautics and Space Administration’s
(NASA's) Earth System Science Pathfinder (ESSP) pro-
gram. Spaceborne T, observations provide an indirect
measure of antecedent rainfall that, if properly inter-
preted by the land data assimilation system, could cor-
rect land surface model predictions for the impact of
rainfall inputs derived from the sparse sampling of an
intermittent rainfall event. It is important to note that
such systems will not correct rainfall estimates them-
selves. Rather, their aim would be to mitigate the impact
of rainfall-forcing errors on aland surface model’s rep-
resentation of surface state and flux variables.

The purpose of this analysis is to examine the po-
tential of a data assimilation system designed around
the ensemble Kalman filter (EnKF) to combine tem-
porally sparse rainfall rate measurements—ostensibly
from a spaceborne source-with T, observations driven
by near-surface soil moisture conditions. The applica-
tion of the EnKF to the assimilation of T, observations
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into aland surface model was first described in Reichle
et al. (2002a). Recent work has successfully extended
the application of the EnKF to cases involving real T,
observations acquired during the 1997 Southern Great
Plains Hydrology Experiment (SGP97) (Margulis et a.
2002; Crow and Wood 2003). The approach used here
is based on the generation of a set of precipitation re-
alizations (conditioned by both climatological expec-
tations and temporally sparse rainfall observations) to
force an ensemble of land surface state forecasts. These
forecasts are, in turn, updated using a remote obser-
vation of L-band brightness temperature and the stan-
dard Kaman filter update equation. Preliminary work
in Crow and Wood (2003) describes an EnK F-based data
assimilation system where the model forecast ensemble
is based solely on climatological expectations concern-
ing precipitation. This implies that no observations of
antecedent rainfall are available at EnKF update times.
Even for remote portions of the globe such an assump-
tion is unrealistically restrictive. The development of
global spaceborne retrieval technologies virtually guar-
antees that, however incomplete or temporally sparse,
some type of rainfall observation will be available to
condition likelihood concerning recent rainfall accu-
mulations beyond what is possible from purely clima-
tological considerations. Consequently, this paper ex-
pands on earlier work by presenting a data assimilation
system capable of integrating both surface T, obser-
vations and sparse rainfall accumulations derived from
the temporal sampling of rainfall rates at frequencies
consistent with expectations for current and next-gen-
eration spaceborne radiometer systems (2—12 observa-
tions per day). As afirst approach for proof of concept,
initial results are generated using an identical twin data
assimilation methodology where observations are syn-
thetically generated by a model, perturbed with noise,
and then assimilated back into the same model. Addi-
tional results incorporating real T, observations made
during SGP97 are also presented.

2. Data assimilation system

The data assimilation system examined here consists
of three parts: a land surface model to forecast land
surface model states, an observation model to predict
surface brightness temperatures (T;) based on land sur-
face model state predictions, and an EnKF to update
state forecasts with T, observations. The land surface
and observation models are presented in sections 2a and
2b. As described in section 2c, the EnKF is based on
the use of a model ensemble to temporally propagate
the error covariance information required by the state
update equation of the standard Kalman filter. For this
particular application of the EnKF, the forecast ensemble
isgenerated using a set of rainfall realizations consistent
with the likelihood of various daily rainfall accumula-
tions given climatological considerations and the sparse
subsampling of actual rainfall at temporal frequencies
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FiG. 1. () Timesseries of TOPLATS simulated 40-cm soil moisture
results and daily precipitation at the NOAA ATDD Little Washita
site between 1 Apr 1997 and 31 Mar 1998. (b) Same as (a), but for
the ARM CART EF site 13.

expected in next-generation spaceborne systems. The
statistical procedure used to create these rainfall reali-
zations is detailed in section 2d.

a. Land surface modeling and site descriptions

Numerical modeling of the land surface was based
on Topographically-based Land Atmosphere Transfer
Scheme (TOPLATS) (Famiglietti and Wood 1994; Pe-
ters-Lidard et al. 1997) simulations. The model has been
successfully applied to regions within the Southern
Great Plains (SGP) by a number of studies (see, e.g.,
Peters-Lidard et al. 2001; or Crow and Wood 2002).
The top soil moisture layer in TOPLATS was set to a
depth of 5 cm to reflect the expected vertical depth of
sensitivity for remote L-band T observations. Simu-
lations were run between 1 April 1997 and 31 March
1998 on an hourly time step at the Department of En-
ergy’s Atmospheric Radiation Measurement (ARM)
Cloud and Radiation Testbed (CART) extended facility
site 13 (EF13; 36°36'N, 97°29'W) near Lamont,
Oklahoma, and the NOAA Atmospheric Turbulence and
Diffusion Division (ATDD) Little Washita watershed
site (34°58’N, 97°57'W) near Chickasha, Oklahoma.
Peak leaf area index (LAI) values during the growing
season were adjusted to fit local energy flux observa-
tions. Simulated soil moisture time series are shown in
Fig. 1 and model validation results for both sites are
shown in Figs. 2 and 3. Additiona details on the ap-
plication of TOPLATS to these sites can be found in
Crow and Wood (2003). Despite their proximity, the
two sites demonstrate substantially different root-zone
soil water dynamics during the 1997 growing season.
The ARM CART EF13 site was usually wet due to the
impact of several large precipitation eventsin June and
July. Conditions at the NOAA ATDD Little Washitasite
are more typical of the region’s climatology, with an
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absence of sustained precipitation during June and July
leading to a strong dry down during the midsummer
months. In general, denser vegetation at the ARM
CART EF13 site produces relatively more transpiration
and faster root-zone dry-down dynamics.

b. Microwave emission modeling

Surface (5 cm) soil moisture and soil temperature
predictions made by TOPLATS were processed through
the Land Surface Microwave Emission Model
(LSMEM) (Crow et al. 2001) to produce corresponding
estimates of L-band surface brightnesstemperature(Ty).
Microwave radiative transfer parameters for both sites
were taken from Jackson et al. (1999). Brightness tem-
perature validation results in Fig. 2 and 3 are based on
airborne electronically scanning thinned array radiom-
eter (ESTAR) measurements made during the SGP97
experimental period (17 June to 16 July 1997). The
ESTAR measurements have a pixel resolution of 800
m. However, to account for georegistration uncertain-
ties, ESTAR T, measurements used here were derived
from averaging observations within a3 X 3 pixel win-
dow centered on each site. It is worth noting that com-
parisons between 5-cm soil moisture gravimetric soil
moisture samples in the immediate vicinity of the ARM
CART EF13 site and TOPLATS predictions are quite
good. This suggests that the pronounced negative bias
in LSMEM T, predictions shown in Fig. 3 is at least
partially a scale effect reflecting the difference in sup-
port between the plot-scale model simulation and the
field-scale ESTAR retrieval (Crow and Wood 2003).

c. The ensemble Kalman filter

The EnKF uses an ensemble-based Monte Carlo ap-
proach to temporally propagate error covariance infor-
mation required by the standard Kalman filter (KF) for
updating of model predictions with observations (Ev-
enson 1994; Reichle et a. 20024). Using notation pre-
sented in Reichle et al. (2002a), this section describes
the state space representation of the EnKFE Take Y (t) to
be a vector of model state variables at time t. The po-
tentially nonlinear prognostic equation f describing the
temporal evolution of these states can be represented as

dy )

pm f(Y, w).
The error term w originates from inadequacies in model
physics, poor parameter selection, and/or errors in mod-
el forcing data. Let the operator M represent the mea-
surement operator that converts the state variablesin Y
into a measurements taken at time t,:

Z, = MY(t)] + v, 2

where v, represents additive Gaussian measurement
noise with covariance C,,. The EnKF is based on the
Monte Carlo generation of an ensemble of Y predictions
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Fic. 2. TOPLATS and LSMEM vadlidation results for the ARM CART EF13 site near Lamont, OK.
Plotted energy flux and surface temperature results are averaged values between 1000 and 1600 local
time. Observed brightness temperatures are taken from L-band ESTAR retrievals during SGP97.

via (1). Thisreguires an a priori assumption concerning
the nature and structure of model error represented by
w and the perturbation of individual model realizations
(or forecasts) with an appropriate statistical represen-
tation of this error. At each measurement time, state
predictions made by the ith model realization within the
ensemble are referred to asthe forecast Y'. If f islinear
and all errors are additive, independent, and Gaussian,
the optimal updating of Y' by the actual measurement
Z, is given by

Yi =YL+ K J[Z = M(YL)], (€)
Ky = [CYM(CM + Cv)il]t:tk’ (4)

where C,, is the error covariance matrix of the measure-
ment forecasts M (Y'), Cy, is the cross-covariance ma-
trix between the predicted measurements and state var-
iables contained Y' , and Y', is the updated (or analysis)

and

state representation. For each ensemble realization, an
additive noise term consistent with v, must be synthet-
ically generated and added to Z, to produce the perturbed
observation Zi. Thisis required to ensure that the spread
of the updated state ensemble accurately reflects the true
state error covariance (Burgers et al. 1998). From the
ensemble, C,, and C,,, are statistically estimated by cal-
culating covariances around the ensemble mean. Each
ensemble replicate is updated using (3) and (4) and then
allowed to evolve via (1) until the next measurement
time. Filter predictions are typically derived from aver-
aging model forecasts across the ensemble.

d. Conditioned rainfall likelihood distributions

A statistical representation of error in daily rainfall
accumulations associated with the sparse temporal sam-
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Fic. 3. TOPLATS and LSMEM validation results for the NOAA ATDD Little Washita site near
Chickasha, OK. Plotted energy flux and surface temperature results are averaged values between
1000 and 1600 local time. Observed brightness temperatures are taken from L-band ESTAR

retrievals during SGP97.

pling of rainfall was constructed by applying a direct
subsampling approach to 15-min rain gauge data col-
lected at all Oklahoma Mesonet stations during the cal-
endar years 1997 and 1999. For a daily sampling fre-
guency of v, rainfall rates were assumed constant and
equal to the observed 15-min gauge-derived rate for the
24y~1 h period centered on each observation. Rainfall
rate estimates for the each of the 24v-* h periods in a
single day were then averaged and used to construct a
daily rainfall accumulation estimate R. Each daily rain-
fall estimate R was paired with the corresponding true
daily accumulation rainfall value R derived from sum-
ming all observations within a given day. This pairing
was repeated for every day at every Oklahoma Mesonet
station during 1997 and 1999. The resulting set of (R,
R) pairs were then discretely binned according to both
R and R and used to construct a series of conditional

likelihood distributions f,(R|R) for various discrete
ranges of R. This set of distributions included the case
of zero measured rainfal f (R|R = 0) describing the
probability of falsely negative rainfall observations.
The conditioning of accumulation likelihoods de-
pends on the frequency of sampling that supports the
accumulation estimate. Sets of conditional distributions
were constructed for rainfall sampling rates (v) of 2, 4,
6, 8, and 12 day—*. The specia case of unconditioned
rainfall intensities f,(R) was also constructed to rep-
resent daily rainfall likelihood in the absence of any
rainfall measurements (i.e., » = 0). Figure 4 shows a
set of f, (R|R) histograms for v = 8 day —*, constructed
using seasonally and geographically pooled observa-
tions within the entire state of Oklahoma. No attempt
was made to parameterize or model the likelihood dis-
tributions. Instead, individual rainfall realizations were
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randomly sampled from the exact set of observations
used to construct the likelihood distributions.

3. Methodology

Two separate methodol ogies were utilized to evaluate
the data assimilation system. The first approach was
based on an identical twin data assimilation experiment
design. In this approach, TOPLATS/LSMEM simula-
tions forced by complete (i.e., not subsampled) local
rain gauge observations were designated as truth. These
simulations, shown in Fig. 1 and validated in Figs. 2

and 3, will be referred to as *‘benchmark’ simulations.
LSMEM T predictions from benchmark simulations
were perturbed with random error (C, = 9 K?) to form
aset of daily synthetic observationsZ, and reassimilated
back into TOPLATS via the EnKE The second meth-
odology utilized real ESTAR observations of T, ac-
quired during SGP97. During the experiment (17 June
1997 to 16 July 1997), ESTAR imaging was performed
on 18, 19, 20, 25, 26, 27, 29, and 30 June, and on 1,
2, 3,11, 12, 13, 14, and 16 July.

For the 24-h period preceding 1600 UTC (the ap-
proximate measurement time for ESTAR measurements
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during SGP97), daily estimated rainfall amounts (R)
were derived at each site through the subsampling of »
15-min rain gauge observations per day. This subsam-
pled estimate was then used to select the proper f,(R|R)
histogram (Fig. 4) from which to sample a set of daily
rainfall amounts. Sampled daily rainfall amounts were
distributed equally among 24cv—* consecutive hours of
rainfall randomly located within the 24-h period, where
C is the number of 15-min rainfall gauge measurements
where rainfall was observed. This ensemble of hourly
rainfall time series was used to generate an ensemble
of 25 TOPLATS state (Y) and LSMEM observation
[M(Y)] forecasts from which forecast estimates of mod-
el error (C,,, and C,,) could be obtained. Model ensem-
bles were created for every 24-h period regardless of
whether T, observations were availablefor assimilation.
At times with observations, each ensemble member was
updated using the T, observations (Z,) and the EnKF
update equation given in (3). Four TOPLATS soil mois-
ture states (0-5, 5-15, 15-40, and 40 cm to water table)
and one soil temperature state (7.5 cm) were updated
in this way. These simulations will be referred to as
“EnKF’ or *"EnKF-based assimilation” results. Like-
wise, simulations where rainfall ensembles were gen-
erated but not updated with T, observations will be
referred to as ““open loop” simulations.

Additional TOPLATS simulations were constructed
that relied directly on subsampled rainfall data to pro-
vide hourly precipitation forcing. Like open loop results,
these simulations did not assimilate T, observations.
However, unlike open loop results, they did not employ
the rainfall ensemble generation procedure described in
section 2d. Instead, for agiven daily sampling frequency
of v, hourly rainfall rates were assumed constant and
equal to the observed 15-min gauge-derived rate for the
24y~1 h period centered on each observation. TOPLATS
output for these simulations will be referred to as
‘“*subsampled precipitation’ results. The accuracy of
TOPLATS and LSMEM predictions derived from the
assimilation of Tg observations via the EnKF will be
evaluated based on their ability to improve surface state
and flux predictions rel ative to subsampl ed precipitation
simulations that utilize neither T, observations nor the
EnKF methodology.

4. Results: Identical twin experiment

Figure 5 shows root-zone soil moistureresultsderived
from the EnKF-based assimilation of L-band surface
brightness temperature (T;) into TOPLATS simulations
forced using sparse observationsof rainfall. The T, mea-
surements assimilated to produce EnKF results in Fig.
5 were synthetically generated every day at 1600 UTC
(1000 CST) using the identical twin experiment meth-
odology described in section 3. Rainfall observations
were taken from the subsampling of eight 15-min rain
gauge observations per day. This series of eight daily
measurements were spaced evenly throughout the day
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FiG. 5. (a) At the NOAA ATDD Little Washita site, time series of
40-cm soil moisture results for: the benchmark TOPLATS simulation,
TOPLATS simulations forced by eight-times-daily subsampling of
precipitation, and EnKF results (eight-times-daily precipitation and
daily Ty observations) during the 1997 growing season. (b) Same as
(a), but for the ARM CART EF13 site.

July 1 August 1 Sept 1

with the first measurement occurring at 0000 UTC. Also
shown are TOPLATS results derived from the direct use
of subsampled precipitation and benchmark TOPLATS
predictions based on all available rainfall data at both
sites. At the NOAA ATDD Little Washita site, the as-
similation of T, observations allows for amore accurate
representation of a midsummer dry down by compen-
sating for the consistently high bias of precipitation es-
timates derived from sparse subsampling of rainfall
events. Conversely, at the ARM CART EF13 site, large
precipitation events in late June and early July are un-
derestimated by temporally sparse rainfall sampling,
leading to anomalously dry conditionsduring themiddle
portion of the growing season. By interpreting surface
L-band T, observations and accurately replenishing
root-zone soil water at deeper levels, the EnKF-based
assimilation of Ty is able to compensate for error in
rainfall forcing data. It should be noted that the root-
zone depth assumed in Fig. 5 (40 cm) is considerably
deeper than the shallow vertical depth of sensitivity for
Tg observations (5 cm). Consequently, results do not
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Fic. 6. (a) At the NOAA ATDD Little Washita site, time series of
rms error in EnKF 40-cm soil moisture predictions. Errors are pooled
values based on all possible start times for precipitation observations.
Also shown are rms errors associated with the direct forcing of
TOPLATS using subsampled precipitation data. (b) Same as (a), but
for the ARM CART EF13 site.

simply reflect the direct replacement of model-generated
soil moistures with remote observations.

Results in Fig. 5 are based on the designation of just
one of the 12 possible 15-min intervals between 0000
and 0300 UTC as the start time for the cyclic sequence
of eight rainfall observations per day. Instead of plotting
results for all 12 possible start times, Figs. 6 and 7
summarize them by plotting pooled root-mean-square
(rms) differences between the benchmark TOPLATS
simulation and EnKF root-zone soil moisture results.
Also plotted are pooled rms errors associated with the
direct use of eight-times-daily subsampled precipitation
to force TOPLATS. EnKF root-zone soil moisture re-
sults in Fig. 6 show substantial improvements versus
subsampled precipitation results during the growing sea-
son. Spikes in rms error, coinciding with large precip-
itation events, suggest that the EnKF does not imme-
diately incorporate the impact of intense precipitation;
however, the assimilation of T, observations in the af-
termath of rainfall events alows for a sharp correction
during the early portion of dry-down events. Relative

Fic. 7. (a) At the NOAA ATDD Little Washita site, time series of
rms error in daily averaged (1000 to 1600 local time) EnKF latent
heat flux predictions. Errors are pooled values based on all possible
start times for precipitation observations. Also shown are rms errors
associated with the direct forcing of TOPLAS using subsampled pre-
cipitation data. To improve readability, all errors are temporaly
smoothed within a 3-day moving average window. (b) Same as (a),
but for the ARM CART EF13 site.

to the growing season, less improvement is observed
during fall and winter months. Raising the observational
error used to create synthetic T observations from 3 to
6 K increases rms error in EnNKF predictions by about
10% at both sites (not shown).

Analogous latent heat flux results are shown in Fig.
7. Large errors in subsampled precipitation results are
due to the inability of sparse rainfall rate sampling to
accurately capture alternating periods of water- and en-
ergy-limited evapotranspiration during the growing sea-
son. For instance, subsampled precipitation results for
the NOAA ATDD Little Washita site in Fig. 7a show
large errors during a dry period in July (see Fig. 5).
Much of this error is due to instances where the sub-
sampling of modest precipitation eventsin late June and
early July overestimates their intensity and underesti-
mates the severity of the subsequent water-limited
evapotranspiration period. As seenin Fig. 5a, the EnKF-
based assimilation of T, observations removes water
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FiG. 8. (a) Pooled rms error for EnKF 40-cm soil moisture results over entire simulation period
(1 Apr 1997 to 31 Mar 1998) for both study sites at arange of rainfall and T, sampling frequencies.
Errors are calculated relative to benchmark TOPLATS simulations. (b) Same as (a), but only for
the growing season (1 May 1997 to 31 Sep 1997).
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from the root-zone and compensates for the overesti-
mation of antecedent rainfall amounts. This leads to an
improved representation of soil water limitation on
evapotranspiration at both sites. The absence of evapo-
transpiration errors from October to May is due to the
near uniformity of energy-controlled evapotranspiration
conditions at both sites during the winter and spring.

a. Impact of observation frequency

Figure 8a plots 40-cm soil moisture rms error results
for arange of rainfall and T, sampling frequencies dur-
ing the entire simulation period (from 1 April 1997 to
31 March 31 1998). Error statistics were derived from
pooling soil moisture results at both study sites and
using all possible start times for daily rainfall obser-
vations. Figure 8b is identical, except the values are
derived from pooling results during the growing season
only (from 1 May 1997 to 31 September 1997). The
lowest possible T, observation frequency (i.e., never)
corresponds to an open loop case where individual rain-
fall realizations are generated from rainfall likelihood

distributions but not updated via (3). Comparison be-
tween open loop and subsampled precipitation cases
provides an important check that the rainfall ensemble
procedure described in section 2d is generating errors
consistent with actual uncertainties associated with the
direct use of subsampled rainfall.

In contrast to instantaneous measurements of precip-
itation fluxes, T, observations measure a surface state—
soil moisture—containing integrated information about
past rainfall events. Figures 8 and 9 demonstrate the
potential value of this memory for filtering errors as-
sociated with sparsely subsampled and memoryless pre-
cipitation flux retrievals. For instance, during the grow-
ing season (Fig. 8b) the assimilation of daily surface T,
measurements reduces rms error in 40-cm soil moisture
predictions by about 50% for 12 rainfall samples per
day and up to 65% for twice-daily sampling. Relative
to open loop results, the EnKF-based assimilation of T,
also reduces the sensitivity of root-zone soil moisture
errors to the frequency of rainfall observations. This
loss of sensitivity is evident for T, measurement rates
as infrequent as once every 5 days. One conseguence
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FiG. 9. (a) Pooled rms error for daily averaged (1000 to 1600 local time) EnKF latent heat flux
results over entire simulation period (1 Apr 1997 to 31 Mar 1998) for both study sites at a range
of rainfall and Ty sampling frequencies. Errors are calculated relative to benchmark TOPLATS
simulations. (b) Same as (a), but only for the growing season (1 May 1997 to 31 Sep 1997).

of thisinsensitivity is the relative superiority of a com-
bination of sparse L-band T, observations and rainfall
sampling rates versus much more frequent rainfall ob-
servationsin isolation. For instance, during the growing
season twice-daily rainfall sampling and one T, obser-
vation every five days leads to errors that are compa-
rable to 12 rainfall samples per day and no T, obser-
vations. Likewise, results for twice-daily retrievals of
rainfall rate and daily T, observations are as accurate
as those for any combination of more frequent rainfall
observations (up to 12 samples per day) and sparser Tg
retrieval rates.

Figure 9 is analogous to Fig. 8, except that it dem-
onstrates latent heat flux errors. One clear contrast be-
tween Figs. 8 and 9 is the degree to which open loop
and subsampled precipitation results differ. For latent
heat flux, open loop TOPLATS results, where estimated
Rvalues are used to sample an ensembl e of precipitation
intensities from the appropriate f(R|R) likelihood dis-
tribution, are more accurate than subsampled precipi-
tation results based on the direct use of R. Sparse sub-
sampling of precipitation tends to enhance precipitation

intermittency and strongly overpredict both the length
and severity of soil-controlled evapotranspiration peri-
ods. In contrast, using R to generate a likelihood-based
ensemble of precipitation events temporally smoothes
precipitation and moderates the severity of soil water
content extremes. This keeps evapotranspiration rates
for open loop results at or near potential evapotrans-
piration levels. Because the 1997 growing season isrel-
atively wet, a blanket assumption of potential evapo-
transpiration is acceptable for many periods of time and
open loop latent heat flux predictions do not exhibit
large errors. Nevertheless, daily assimilation of T, mea-
surements allows for improved representation of soil-
controlled periods and reduces rms errorsin TOPLATS
latent heat flux predictions by up to 50% relative to the
open loop case.

b. Filter performance

EnKF results can aso be evaluated based on their
consistency with regards to the assumptions that un-
derlie the optimality of the Kalman filter update equa-
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Fic. 10. (a) Distribution of coefficient of skew results for soil
moisture ensemble forecasts at a range of depths. (b) Distribution of
normalized filter innovations and a reference standard normal distri-
bution.

tion. For instance, previous work has noted that uncer-
tainty in rainfall does not necessarily lead to Gaussian
error forecasts for T and surface soil moisture (Crow
and Wood 2003). Figure 10a plots histograms for co-
efficient of skew results calculated from pooled model
forecasts of soil moisture at both study sites. Surface
(0-5 cm) soil moisture results are generally associated
with large positive skew. Even when no rainfall is de-
tected (i.e,, R = 0) some positive rainfall realizations
are required for the rainfall ensemble to properly ac-
count for falsely negative precipitation observations.
Therefore, in contrast to the majority of ensemble re-
alizations capturing a drying tendency, isolated ensem-
ble members with positive rainfall forcing will become
sharply wetter. This leads to positively skewed forecast
ensembles for surface soil moisture and potentially non-
optimal updating using (3). One influence on forecast
skew is the frequency of rainfall observations. Increas-
ing the frequency of rainfall rate observations from 2
to 12 day—* reduces the average coefficient of skew in
5-cm forecasts, but only slightly (from 1.87 to 1.58). A
much stronger factor is the depth of the forecasted soil
moisture state. As demonstrated in Fig. 9a, forecast
skew is progressively reduced within deeper soil layers.

The forecast skew observed in Fig. 10a can be re-
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duced through ancillary measurements, which eliminate
the possibility of falsely negative rainfall observations.
For instance, in cases where sparse rainfall radiometer
subsampling detects no rainfal (i.e., R = 0), visible
(VIS) and thermal infrared (IR) precipitation indices
from geostationary satellites could be used to make a
rain/no-rain determination for the entire day. During
days with no rain, areliable no-rain determination elim-
inates the need to generate the small number of positive
rainfall realizations that tend to skew the entire forecast
ensemble. If the VISR observation system detectsrain
and the sparse radiometer sampling does not, rainfall
rates can be sampled from a conditioned likelihood dis-
tribution reflecting positive rainfall, which is undetected
by sparse subsampling at arate of vday *{i.e., f [R[(R
> 0 and R = 0)]}. Incorporating this modification,
EnKF results for eight rainfall observations per day and
daily Ty measurements were repeated at the NOAA
ATDD site using a modified assimilation system that
assumed perfect rain/no-rain determinations were avail-
able. Eliminating the possibility of falsely negativerain-
fall observations reduces the coefficient of skew in sur-
face (0-5 cm) soil moisture forecasts by 71% (1.71—
0.50), yet improves model EnKF predictions of root-
zone soil moisture by only 12% (0.0047-0.0041 m).
Such a modest improvement in accuracy implies that
skew in model forecasts of T, and surface soil moisture
is not a major source of overall error in results for the
original filter. One possible explanation for this is the
confinement of large skew to state forecasts within sur-
face layers that constitute a minor fraction of overall
root-zone volume. Deeper, more substantial soil mois-
ture states exhibit considerably less skew and are, there-
fore, more amenable to updating using the EnKFE This
result is consistent with earlier work by Reichle et al.
(2002b) who demonstrate the adequacy of the EnKF in
updating skewed forecast ensembles arising from non-
linearites in land surface models.

The statistical properties of the filter innovations pro-
vide an additional diagnostic tool for assessing filter
performance. A filter's innovations are defined as the
sequence of differences between forecasted and actual
observations Z, — M (YL). If the underlying assump-
tions of the Kalman filter are fully met (i.e., linear mod-
els and uncorrelated Gaussian errors), observed inno-
vations should be temporally uncorrelated, mean zero,
and Gaussian with a covariance equal toC,, + C,. The
degreeto which actual innovations depart from thisideal
gives a sense as to the applicability of the Kalman filter
update equation to a particular filtering problem. Figure
10b plots a histogram of normalized innovations—[Z,
- M (YD)/(C, + C,)—observed at both study sites
during assimilation of daily T, observations and eight-
times-daily subsampling of rainfall. A standard normal
distribution is also plotted for reference. The positive
shift of the normalized innovation distribution relative
to the standard normal reflects the continual readjust-
ment of excessively wet (i.e., low T;) ensemble mem-
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Fic. 11. Time series of TOPLATS LSMEM T, predictions derived
from both OK Mesonet rainfall gauge measurements and precipitation
retrievals extracted from the GPCP 1DD dataset within the 1° lat X
1° lon grid cell surrounding the ARM CART EF13 site (36° to 37°N
and —97° to —98°W). Also plotted are spatially averaged ESTAR T
observations within the same degree box.

bers produced to capture the possibility of falsely pos-
itive rainfall observations. Frequent low T, forecasts
relative to actual measurements lead, in turn, to an ex-
cessive amount of positive innovations. Likewise, the
non-Gaussian tail at large negative normalized inno-
vations is due to the inability of the climatologically
based ensembling procedure to capture large precipi-
tation events during the modeling period. Because rain-
fall ensembles are based on climatological likelihoods,
large events are not well represented. In a Bayesian
sense, this is because unusually intense rainfall obser-
vations are more likely associated with large sampling
errors than an actual rare event. Consequently, for large
R, few, if any, rainfall realizations generated from the
f(R|R) likelihood distribution will be greater than R
(see Fig. 4). However, several large precipitation ob-
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servations at the ARM CART EF13 site are, in fact,
accurate representations of unusually intense precipi-
tation events. Theinability of the rainfall ensemble gen-
eration procedure to reflect such extreme events leads
to the strong overprediction of T, and the non-Gaussian
negative tail on the innovation histogram shown in Fig.
9.

5. Results: Real observations

Datasets collected during SGP97 provide an oppor-
tunity to eval uate the proposed data assimilation system
using real remote sensing observations of T,. Figure 11
shows T, predictions for a TOPLATS LSMEM sim-
ulation of the ARM CART EF13 site forced by both
rain gauge observations and rainfall data extracted
from the satellite-derived GPCP 1DD dataset. Also
plotted are L-band T, observations derived from air-
borne ESTAR measurements during SGP97. To en-
sure compatibility with the 1° resolution of the 1DD
rainfall observations, ESTAR observations, LAl forc-
ing for TOPLATS, and gauge-based precipitation ob-
servations were averaged within the 1° lat X 1° lon grid
box roughly centered on the ARM CART EF13 site.
Due to apparent errors in the 1DD rainfall, the two
simulations diverge on 25 June, 29 June, and 15 July.
While TOPLATS LSMEM T, predictions derived from
local rain gauge observations are quite accurate, results
with spaceborne 1DD rainfall observations are clearly
not consistent with independent ESTAR T, observa-
tions. It is this lack of consistency that forms the ob-
servational basis for the detection, and eventual correc-
tion, of land surface model errors associated with poor
rainfall forcing.

While Fig. 11 demonstrates the basic detectability
assumption at the heart of the data assimilation system,
it does not validate the system itself. As a first step
toward this, Table 1 presents results for the assimilation
of actua ESTAR T, measurements during the SGP97
period (17 June to 16 July 1997). Results are shown for
rainfall forcing consistent with both twice and eight-
times-daily subsampling of rainfall rates. ““ESTAR” re-
sults are based on updating with real L-band T, obser-

TaBLE 1. Comparison between rms errors in EnKF 40-cm soil moisture (6., ,) and latent heat flux (AE) results utilizing both synthetic
and actual ESTAR T observations. Given rms errors are calculated by pooling results between 17 Jun and 16 Jul 1997. Results are shown

for rainfall rate subsampling frequencies (v) of both 2 and 8 day—*.

Site v (day—1) T, source 0406m (M) AE (W m—2)
NOAA ATDD Little Washita 2 Synthetic 0.0079 26.5
2 ESTAR 0.0114 63.2
2 ESTAR (bias corrected) 0.0074 21.7
8 Synthetic 0.0061 21.4
8 ESTAR 0.0107 58.6
8 ESTAR (bias corrected) 0.0061 19.6
ARM CART EF13 2 Synthetic 0.0167 24.4
2 ESTAR 0.0188 29.7
8 Synthetic 0.0138 27.3
8 ESTAR 0.0154 28.0
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vations at each of the 16 ESTAR observations times
(see Fig. 11). Results for *““synthetic T, observations
are based on updating at the same 16 times, but with
Tg values synthetically generated by the identical twin
experiment. Asin the identical twin experiment, errors
for both are based on comparisons to the benchmark
TOPLATS simulation described in section 3. Conse-
guently, comparisons in Table 1 give a sense as to the
feasibility of obtaining the accuracy improvements seen
in Figs. 6, 7, 8, and 9 with real T observations. At the
ARM CART EF13 site, real T, observations are nearly
as effective as synthetically generated observations.
However, the assimilation of T, observations at the
NOAA ATDD Little Washita site does not lead to com-
parable accuracies until after the T, bias observed in
Fig. 3 is removed. In a truly operational setting, such
an adjustment would require the successful application
of a hias detection and correction strategy (Dee and
DaSilva 1998).

6. Summary and conclusions

Random sampling errors due to temporally sparse ob-
servation frequencies (2-12 per day) are expected to
comprise a major fraction of retrieval error for current
and next generation radiometer systems designed to es-
timate daily rainfall accumulations from space (e.g.,
Bell et al. 1990, or Steiner 1996). The presence of ran-
dom errorsin precipitation forcing data for land surface
models can lead to large uncertainty in predictions of
root-zone (40 cm) soil moisture and surface energy flux-
es (Figs. 5 and 6). However, surface T observations
appear to offer a viable observational basis to detect
land surface model errors associated with poorly re-
trieved rain rates (Fig. 11). This analysis exploits this
potential by developing an EnKF-based data assimila-
tion system designed to update land surface model pre-
dictions, made uncertain by the impact of random sam-
pling error in rainfall observations, with surface T, ob-
servations supported only by near-surface (0-5 cm) mi-
crowave emission.

The EnKF-based land surface data assimilation sys-
tem presented in section 2 is based on the use of tem-
porally sparse rainfall observations—ostensibly from a
spaceborne source—to condition expectations concern-
ing daily rainfall accumulations. Using a Monte Carlo
approach, rainfall realizations sampled from histograms
of conditional rainfall likelihoods are run through aland
surface and forward microwave emission model to cre-
ate an ensemble of land surface state and surface mi-
crowave brightness temperature (T;) predictions. This
ensemble provides the necessary error covariance in-
formation to update individual members of the ensemble
with T, observations via Eq. (3). A synthetic identical
twin experiment demonstrates that the approach is ca-
pable of substantially reducing errorsin both root-zone
soil moisture and surface energy flux predictions rel-
ative to results derived from the direct use of sparsely
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subsampled rainfall to force TOPLATS (Figs. 6, 7, 8,
and 9). Preliminary results with real T predictions ob-
tained during SGP97 suggest that comparable levels of
correction are obtainable using actual L-band T, ob-
servations (Table 1), athough in some cases, reaching
this potential may require the application of an effective
bias detection strategy.

Results in Figs. 8 and 9 can also be used to gauge
the relative value of spaceborne brightness temperature
and rainfall rate observationsfor land surface modeling.
A generalization emerging from the figuresisthe degree
to which a combination of relatively sparse rainfall rate
and T, measurements leads to more accurate state and
flux predictions than open loop (i.e., no T assimilation)
results driven by more frequent rainfall observations.
Given twice-daily observations of rainfall, L-band
spaceborne retrievals of T, every 3 days are more valu-
able for root-zone soil moisture and surface energy flux
prediction than an increase in the observational fre-
quency of rainfall rate retrievals from 2 to 8 day*.
There are also indications that adequate T, sampling
may preclude the need to improve the temporal sampling
characteristics of spaceborne rainfall systems. Updating
with daily observations T, and the EnKF substantially
reduces the observed sensitivity of results to the fre-
guency of rainfall observations.

A central issue in the design of any data assimilation
system is the choice of a particular assimilation tech-
nique. As a noted in Reichle et al. (2002a) the EnKF
has a number of attributes that make it well suited for
the assimilation of T, observations into a land surface
model. Of particular interest here is the EnKF's flexi-
bility with regard to model error type and ability to
temporally propagate uncertainty associated with poor
rainfall forcing. This flexibility distinguishes the EnKF
from other variants of the Kalman filter—most notably
the extended Kalman filter (Reichle et al. 2002b). One
potential downside for the EnKF isthe presence of skew
in ensemble model forecasts (Fig. 10), which will pre-
vent optimal updating of ensembles via the Kalman fil-
ter. Because alternative assimilation strategies, partic-
ularly the fully nonlinear Monte Carlo Bayesian filter
presented by Anderson and Anderson (1999) and the
variational smoother incorporating model error pre-
sented by Reichle et a. (2001), are better suited for
dealing with non-Gaussian errors than the EnKF, mea-
suring the impact of this forecast skew on eventual
EnKF update accuracy is critical for assessing the rel-
ative suitability of the EnKF versus other assimilation
techniques. Section 4b demonstrates that assuming the
availability of accurate rain/no-rain determinations
eliminates a majority of the forecast skew. Crucialy,
this sharp reduction is not associated with substantial
improvements in assimilation results. This implies that
forecast skew was not a major source of error in the
original EnKF-updated state predictions, which, in turn,
supports the EnKf’'s overall suitability for this appli-
cation.
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Several caveats should be noted concerning overall
results presented here. First, the U.S. SGP region is
widely regarded as nearly optimal for soil moisture re-
mote sensing. The value of L-band T, observations for
the inference of surface state conditions will almost cer-
tainly be reduced for more densely vegetated regions.
Finally, a more thorough analysis would include addi-
tional causes of uncertainty in spaceborne rainfall rate
retrievals (e.g., ambiguities surrounding the selection of
an appropriate rain rate—reflectivity relationship and
beam-filling problems for spaceborne radiometers) as
well as a realistic spatia resolution for spaceborne T,
observations.
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