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ABSTRACT

The treatment of aerodynamic surface temperature in soil–vegetation–atmosphere transfer (SVAT) mod-
els can be used to classify approaches into two broad categories. The first category contains models utilizing
remote sensing (RS) observations of surface radiometric temperature to estimate aerodynamic surface
temperature and solve the terrestrial energy balance. The second category contains combined water and
energy balance (WEB) approaches that simultaneously solve for surface temperature and energy fluxes
based on observations of incoming radiation, precipitation, and micrometeorological variables. To date, few
studies have focused on cross comparing model predictions from each category. Land surface and remote
sensing datasets collected during the 2002 Soil Moisture–Atmosphere Coupling Experiment (SMACEX)
provide an opportunity to evaluate and intercompare spatially distributed surface energy balance models.
Intercomparison results presented here focus on the ability of a WEB-SVAT approach [the TOPmodel-
based Land–Atmosphere Transfer Scheme (TOPLATS)] and an RS-SVAT approach [the Two-Source
Energy Balance (TSEB) model] to accurately predict patterns of turbulent energy fluxes observed during
SMACEX. During the experiment, TOPLATS and TSEB latent heat flux predictions match flux tower
observations with root-mean-square (rms) accuracies of 67 and 63 W m�2, respectively. TSEB predictions
of sensible heat flux are significantly more accurate with an rms accuracy of 22 versus 46 W m�2 for TOPLATS.
The intercomparison of flux predictions from each model suggests that modeling errors for each approach are
sufficiently independent and that opportunities exist for improving the performance of both models via data
assimilation and model calibration techniques that integrate RS- and WEB-SVAT energy flux predictions.

1. Introduction

Within the past several decades, a large number of
land surface models have been developed to predict the
partitioning of surface net radiation between sensible
and latent heating. These approaches are frequently
lumped together under the broad category of soil–
vegetation–atmosphere transfer (SVAT) schemes.
Such broad terminology belies a number of key struc-
tural differences between approaches. For example, the
contrasting treatment of surface temperature in SVAT
models can be used to separate them into broad two
categories.

The first category contains SVAT models utilizing
remotely sensed (RS) observations of surface radiomet-
ric temperature (Ts) to partition observations of net

radiation (Rn) into various flux components. With a few
exceptions (see, e.g., Castelli et al. 1999), these
approaches are diagnostic in nature and do not tempo-
rally integrate any surface-state information. Instead,
energy flux predictions are made for instantaneous
times at which remote observations of Ts are available.
The RS-SVAT models are typically run at grid sizes
corresponding to the spatial resolution of the remotely
sensed Ts measurements. This ranges from between 10
and 30 m for high-resolution airborne observations
(French et al. 2003) to 8 km for an operational ap-
proach, based on geostationary satellite measurements
(Mecikalski et al. 1999). Examples of RS-SVAT models
include the Two-Source Energy Balance (TSEB) mod-
el (Norman et al. 1995), the Surface Energy Balance
(SEBAL) model (Bastiaanssen et al. 1998), and the
Surface Energy Balance System (SEBS) (Su 2002).

The second broad SVAT model category consists of
coupled water and energy balance (WEB) approaches
containing prognostic equations for the temporal evo-
lution of soil moisture and thermal states based on ob-
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served rainfall, micrometeorology, and radiative forc-
ing. In this framework, surface temperature is a pre-
dicted state and not a forcing variable. As opposed to
RS-SVAT models, WEB-SVAT models are multiob-
jective in nature and make predictions of surface states
(e.g., soil moisture) and water fluxes (e.g., runoff), in
addition to partitioning the surface energy budget
(Gupta et al. 1999). As a consequence, they are typi-
cally more complex and heavily parameterized than
RS-SVAT approaches. A key application for WEB-
SVAT models is providing atmospheric prediction
models with estimates of surface states impacting fluxes
of heat, momentum, and water vapor between the land
surface and boundary layer. This is accomplished either
through direct coupling with an atmospheric model or
through land data assimilation systems that provide op-
erational offline estimates of surface states derived
from observations of precipitation and radiation
(Rodell et al. 2004; Mitchell et al. 2004). WEB-SVAT
models are often run at coarse grid scales (10–100 km)
to facilitate coupling with global and regional atmo-
spheric models. However, their energy flux parameter-
izations are typically based on stomatal and aerody-
namic conductance principles developed at much finer
patch scales (10–50 m). Examples of WEB-SVAT
schemes include the TOPmodel-based Land–Atmo-
sphere Transfer Scheme (TOPLATS) (Famiglietti and
Wood 1994; Peters-Lidard et al. 1997), the variable in-
filtration capacity (VIC) model (Liang et al. 1994), the
Common Land Model (CLM) (Dai et al. 2003), and the
Catchment Land Surface model (Koster et al. 2000).

The intercomparison of WEB-SVAT schemes is an
active area of research (Wood et al. 1998; Pitman et al.
1999; Henderson-Sellers et al. 2003). The intercompari-
son of RS-SVAT approaches, while less common, has
also appeared in the literature (Zhan et al. 1996;
Bindlish et al. 2001). However, despite the fact that
both predict surface energy fluxes over similar scales,
few studies have intercompared WEB- and RS-SVAT
energy flux predictions. Such intercomparisons may
prove to be illuminating because WEB and RS-SVAT
models arrive at energy flux predictions using different
methodologies. In particular, the use of spatially ex-
plicit Ts observations to drive RS-SVAT energy flux
predictions gives RS-SVAT models access to a critical
land surface observation that is typically not by utilized
WEB-SVAT approaches. Extensive surface energy flux
measurements made during the 2002 Soil Moisture–
Atmosphere Coupling Experiment (SMACEX) (Kus-
tas et al. 2005) provide an observational framework in
which to undertake an intercomparison study aimed at
examining spatial differences in WEB and RS-SVAT
energy flux predictions. One potential benefit of such

comparisons is the design of data assimilation and/or
calibration strategies to minimize WEB-SVAT soil
moisture and energy flux errors via the incorporation of
RS-SVAT model energy flux predictions.

The purpose of this analysis is twofold—first, to in-
tercompare spatially distributed predictions of sur-
face energy fluxes made by a WEB-SVAT approach
(TOPLATS) and a RS-SVAT approach (the TSEB
model) to each other and extensive flux tower obser-
vations collected during the SMACEX field experi-
ment; second, to examine prospects for exploiting these
intercomparisons to realize improvements in either
model via error filtering or model calibration tech-
niques. Section 2 contains descriptions of both models.
The application of the models to the SMACEX study
area is described in section 3. Intercomparison results
are presented in section 4 and are discussed in section 5.

2. Model descriptions

Both the RS- and WEB-SVAT models take contrast-
ing approaches to the calculation of surface energy
fluxes. Key contrasts and the specifics of the particular
models employed here are described in the following
two subsections.

a. RS-SVAT modeling (TSEB)

A baseline strategy for many RS-SVAT approaches
is to assume the availability of net radiation (Rn) ob-
servations, calculate ground heat flux (G) as a simple
function of Rn and vegetation density, and estimate sen-
sible heat (H) as

H � �Cp

Taero � Ta

Ra
, �1�

where � is the density of air, Cp is the heat capacity of
air, Taero is the aerodynamic surface temperature, Ta is
the air temperature, and Ra is the surface aerodynamic
resistance. Latent heating (LH) is then calculated as a
residual of the surface energy balance,

LH � Rn � H � G. �2�

The approach is purely diagnostic and no prognostic
predictions of surface thermal or moisture states are
made. Vegetation water stress is diagnosed by monitor-
ing daytime differences between estimates of Taero and
observations of Ta. A fundamental problem with this
baseline approach is that the Taero values required for
(1) are a complex function of surface radiometric tem-
perature observations (Ts), viewing angle, and vegeta-
tion characteristics for partial vegetation canopies
(Kustas and Norman 1996). In addition, typical uncer-
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tainties of 2–4 K in Ts observations hamper the accurate
estimation of Taero � Ta gradients (Kustas and Norman
1997). In response to these problems, a number of key
improvements to this baseline strategy have been pro-
posed. These include the use of contextual information
in space to estimate surrogates for canopy resistance to
transpiration (e.g., Bastiaanssen et al. 1998; Jiang and
Islam 2001), the coupling of approaches with a simpli-
fied boundary layer model (Mecikalski et al. 1999), and
the use of both multiangular and multitemporal Ts ob-
servations to reduce uncertainties in the estimation of
T

aero
� Ta (Kustas and Norman 1997; Anderson et al.

1997).
A key precursor to many of these advances was the

development of two-source emission techniques to ef-
fectively disaggregate Ts observations into canopy and
vegetation components. A detailed description of the
original TSEB model can be found in Norman et al.
(1995). The modeling approach evaluates the tempera-
ture contribution of the vegetated canopy layer and
soil/substrate to the radiometric surface temperature
observation, and the resulting turbulent heat flux con-
tributions driven by surface–air temperature differ-
ences, with aerodynamic resistance parameterizations
for the vegetation and soil components. Here, Rn is
assumed to be observed and G is calculated as a simple
fraction of Rn, leaf area index (LAI), and time of day
(Kustas et al. 1998). Several modifications to the origi-
nal TSEB formulation have been made, which can sig-
nificantly influence flux predictions for partial canopy–
covered surfaces. These include estimating the diver-
gence of net radiation through the canopy layer with a
more physically based algorithm, adding a simple
method to address the effects of clumped vegetation on
radiation divergence and wind speed inside the canopy
layer, adjusting the magnitude of the Priestley–Taylor
coefficient (Priestley and Taylor 1972) that is used in
estimating canopy transpiration, and formulating a new
estimation for soil resistance to sensible heat flux trans-
fer (Kustas and Norman 1999a,b, 2000a,b). See Li et al.
(2005) for a detailed description of the current TSEB
algorithms.

b. WEB-SVAT modeling (TOPLATS)

Most WEB-SVAT approaches make energy flux pre-
dictions by parameterizing components of the surface
energy balance (Rn, H, LH, and G) as a function of
aerodynamic surface temperature (Taero), static surface
parameters describing soil and vegetation properties
(P), forcing variables (e.g., precipitation and incoming
radiation) (W), and current soil thermal (T) and hydro-
logic states (�):

Rn�Taero, P,W� � H�Taero, P,W� � LH�Taero, P,W,��

� G�Taero, P,W,T,��. �3�

All parameters are assumed to be known and specified
by the user. Meteorological variables, including rainfall,
are assumed to be measured, and current soil tempera-
ture and moisture states are calculated through the
temporal propagation of prognostic equations:

dT�dt � f�Taero, �,T,P,W� �4�

d��dt � f�LH, �,T,P,W�. �5�

Some kind of numerical scheme is typically used to
solve (3) for Taero, Rn, LH, H, and G. Then, Taero and
LH solutions are used to explicitly update moisture and
temperature states via (4) and (5). Coupling between
the water and energy balance comes primarily from the
modeled ability of soil moisture limitations to curb
evaporation or transpiration rates to levels below that
of the atmospheric demand. Because Ts observations
are not utilized, WEB-SVAT approaches rely on rain-
fall observations and (5) to detect soil moisture condi-
tions that are conducive to water stress and water-
limited evapotranspiration. Ground heat flux predic-
tions are made by comparing surface temperature
levels that are diagnosed via (3) and deeper soil thermal
states (with greater memory) that are predicted via (4).
The thermal characteristics of the soil are often modi-
fied based on the soil moisture content predicted via
(5).

Despite a common conceptual basis, WEB-SVAT
models vary greatly in their specific parameterization of
(3)–(5). These differences can lead to large contrasts in
energy flux predictions (Henderson-Sellers et al. 2003)
and make it difficult to broadly generalize WEB-SVAT
results. The specific parameterization used here is
based on the baseline version of the TOPLATS model
described in Peters-Lidard et al. (1997, hereafter PL97),
plus recent model modifications described in Crow et
al. (2005).

For this analysis, TOPLATS crop pixels were con-
ceptually divided into bare soil and vegetated compo-
nents, and separate energy balance calculations were
preformed via (3) on each subpixel surface. In the ab-
sence of canopy water storage, all LH in the vegetated
fraction of the pixel is assumed to be the result of plant
transpiration ET and is calculated as

ET � Min�ETp, �
i�i

4

�iETmaxi
�, �6�

where ETmaxi
is the maximum rate of the transpiration

that is sustainable given the moisture status of soil layer
i, �i is the relative fraction of root area within layer i,
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and ETp is the potential transpiration. Here ETp is cal-
culated, as a function of Taero, using the Jarvis-type
approach presented in PL97, and ETmaxi

is based on the
approach of Wetzel and Chang (1988) and Famiglietti
and Wood (1994), where

ETmaxi
�

���i� � �c

rs��i� � rp
, �7�

and � is the soil water matrix potential, 	i is the soil
moisture in layer i, �c is the critical soil moisture po-
tential at which plant wilting begins, rs is the soil resis-
tivity to water flow into the roots, and rp is the internal
plant resistivity to water flow. The resistivity rs is mod-
eled as

rs � ��K���, �8�

where 
 is a root geometry parameter and K is the
hydraulic conductivity of the soil. Turbulent fluxes
from bare soil surfaces are calculated using parameter-
izations listed in PL97, except, following Sauer et al.
(1995), an additional resistance term is added to param-
eterize aerodynamic resistance to the momentum flux
beneath the vegetation canopy:

Ra,soil � �c��Taero,veg � Taero,soil� � b�us�
�1, �9�

where c
 and b
 are constants approximated as 0.0025
and 0.012, us is the wind speed near the soil surface, and
Taero (°C) is calculated via (3). As in the TSEB model,
us is approximated using the exponential model of
Goudriaan (1977). This new resistance term is placed in
the series with an estimate of aerodynamic resistance
above the canopy in order to calculate turbulent energy
fluxes from bare soil surfaces.

Total grid cell energy flux gT is calculated as a
weighted average of the fluxes predicted over vegeta-
tion (g�) and bare soil (gbs) surfaces,

gT � f�g� � �1 � f��gbs, �10�

where f� is the vegetated fraction of the grid cell calcu-
lated from the Normalized Difference Vegetation In-
dex (NDVI) observations using the approach of
Choudhury et al. (1994):

f� � 1 � � NDVI � NDVImin

NDVImax � NDVImin
�p

. �11�

Parameters NDVImin and NDVImax represent the maxi-
mum range of NDVI observations within a scene.

Despite these modifications, TOPLATS retains a
relatively simple single-layer energy balance formula-
tion because neither the vertical divergence of radiation
through the canopy nor the lateral coupling of vegeta-
tion and soil energy fluxes is represented. Following

Norman et al. (1995), separate Taero predictions over
subpixel areas of vegetation and bare soil are integrated
into an estimate of bulk surface radiometric tempera-
ture (Ts) via

Ts � �f�T aero,�eg
4 � �1 � f��T aero,soil

4 �0.25. �12�

3. Model application to SMACEX

Intensive data collection efforts during SMACEX
provide much of the ancillary data required to force
and parameterize each model. Both the TOPLATS and
TSEB models were run on a 60-m grid within the entire
domain shown in Fig. 1. The TSEB model was run on
cloud-free Thematic Mapper (TM) images acquired at
1630 UTC 23 June, 1645 UTC 1 July, and 1650 UTC 8
July 2002. TOPLATS moisture states were initialized
using observations from the United States Department
of Agriculture (USDA) Surface Climate Analysis Net-
work (SCAN) site at Ames, Iowa, and run on an hourly
time step from 0100 UTC 15 June 2002 until 2300 UTC
13 July 2002.

a. Model validation data

Model energy flux predictions were evaluated using
tower-based eddy covariance observations described in
Prueger et al. (2005). Eddy covariance sensors were
mounted on towers at roughly twice the canopy height
and adjusted periodically as crop canopy heights in-
creased. Measurements were acquired at a sampling
frequency of 20 Hz and passed through a low-pass filter
to compute 30-min flux averages. Tower sites were
evenly distributed among corn- and soybean fields and
sited away from land cover transitions (Fig. 1). As with
most eddy covariance systems, the sum of the turbulent
(H � LH) and ground heat flux measurements (G)
observations at these towers during SMACEX was gen-
erally less than the observed net radiation (Rn). Based
on comparisons with independent aircraft observations
during SMACEX, there are some indications that the
closure problems may manifest themselves more in LH
eddy covariance observations than in H (Prueger et al.
2005). This is consistent with earlier work based on the
intercomparison of eddy covariance and Bowen ratio
flux observations (Brotzge and Crawford 2003). Con-
sequently, all flux tower measurements presented here
were derived via closing the observed energy balance
through the calculation of LH as a residual (LH � Rn �
H � G). However, because the definitive evaluation of
various closure techniques is not possible, instances in
which our choice of closure strategy may impact model
results are noted in section 4.

Identifying the upwind source area (i.e., fetch) for
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flux tower measurements is often a source of error in
the intercomparison between distributed modeling re-
sults and tower observations. Here, flux tower observa-
tions are compared against averaged values for all 60-m
modeling pixels whose center fall within a 150-m-
square box located immediately upwind from a given
tower. The analysis of SMACEX flux tower observa-
tions using more sophisticated fetch modeling suggests
that this is a reasonable approximation (Li et al. 2005).
Because SMACEX was run in tandem with the Soil
Moisture Experiment 2002 (SMEX02), extensive
ground-based soil moisture observations are also avail-
able for validation. A full evaluation of TOPLATS soil
moisture and streamflow predictions during the
SMACEX period is described in Crow et al. (2005).

b. Model forcing and parameterization data

For the three TM overpass times, values of LAI and
plant height (h) were derived from TM observations of
the Normalized Difference Water Index (NDWI) and
empirical models presented in Anderson et al. (2004).
For TOPLATS time steps between cloud-free TM
overpasses, parameter values were based on the linear
interpolation of these estimates. Roughness lengths for
momentum and heat transfer were assumed to h/8, and
zero-plane displacement height (D) was set to 2h/3. Air
temperature, vapor pressure, and wind speed observa-
tions on 23 June and 1 July came from 40-m Twin Otter
aircraft observations. When aircraft data were unavail-
able, meteorological forcing data were derived from
approximately 2-m observations at ground-based sta-

tions shown in Fig. 1. Both models used measurement
height inputs to adjust for vertical differences between
aircraft- and tower-based measurements. With the ex-
ception of rainfall inputs for TOPLATS, all meteoro-
logical observations were spatially averaged into a
single value for the entire domain.

Application of the TSEB model to SMACEX condi-
tions is fully described in Li et al. (2005). All TSEB
model results are based on the series version of the
TSEB model (Norman et al. 1995) and the application
of the vegetation-clumping correction presented in
Kustas and Norman (1999b). Net radiation forcing for
the TSEB (not required as an input for TOPLATS) was
calculated using tower-based observations of down-
ward solar radiation and the approach of Campbell and
Norman (1998).

Precipitation observations for TOPLATS were taken
from National Centers for Environmental Prediction
(NCEP) 4-km merged radar–gauge stage IV precipita-
tion products. Soil texture maps of the region were de-
rived from the Iowa State Soil Properties and Interpre-
tation Dataset created by the Iowa State University in
cooperation with the USDA and Iowa Department of
Agriculture and Land Stewardship. Values of Zeff, de-
fined as the depth above which 80% of plant roots are
found, were based on the consideration of corn and
soybean growth stages during the experiment and typi-
cal seasonal root development for both crops. Over the
course of the experiment Zeff values for soybean in-
creased from 0.3 to 0.6 m, and for corn increased from
0.6 to 0.75 m. Relative fractions of rooting area in each

FIG. 1. Land cover classification of the modeling domain slightly south of Ames, IA. Upper-left corner
of image is at 46.5431°N and 43.1304°E (NAD83 UTM zone 15). North is upward. Domain is 18.4 km
north–south and 36.3 km east–west. Blue, red, green, white, and cyan denote soybean, corn, tree, urban,
and grass areas, respectively. Location of meteorological stations and flux towers are indicated with
yellow crosses.
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of the model’s four vertical soil layers were calculated
by assuming an exponential decay of root area density
with depth. Following Feddes and Rijetma (1972), the
root spacing parameter 
 in (8) was defined to use the
empirical relationship 0.0013/Zeff, where both Zeff and

 are in meters. Fractional vegetation cover ( f�) was
derived using (11) and cloud-free TM imagery acquired
on 23 June and 1 July 2002. A value of 2.5 � 108 s was
used for both soybean and crop rp. This is somewhat
lower than the typically cited values of between 5 � 108

s and 1 � 109 s for crops (Wetzel and Chang 1987), and
must be considered a tuned parameter. The impact of
this tuning will be discussed in section 4b(2). Because of
a lack of site-specific measurements, the albedo and
emissivity of all of the modeled land surfaces were set
to 0.20 and 0.96, respectively. All soil parameters were
derived from the soil textural classification map and the
texture-based lookup tables presented in Cosby et al.
(1984). Based on a comparison with LAI measurements
during SMACEX, optimal values for NDVImax,
NDVImin, and p in (11) were found to be 0.93, 0.037,
and 0.606, respectively (M. Anderson 2005, personal
communication).

In addition to corn- and soybean fields, smaller areas
of grass, trees, and urban land cover are present within
the modeling domain. No distinction was made be-
tween grass and agricultural crops. Trees were distin-
guished by using a deeper Zeff (1 m) and increasing rp to
1.5 � 109 s. Urban areas were treated the same as veg-
etated pixels, except that they were modeled as being
impermeable (via specification of an extremely low hy-
draulic conductivity), and their characteristic lack of
biomass was captured by TM-based LAI images of the
region.

4. Results

Results focus on evaluating energy flux results from
both approaches (TOPLATS and the TSEB model) us-
ing eddy covariance flux tower measurements made
during the SMACEX field campaign. Section 4a fo-
cuses on evaluating spatially explicit patterns of surface
energy fluxes predicted by both models, and section 4b
examines the potential for using intercomparison re-
sults to improve model results via simple error filtering
and/or model calibration techniques.

a. Model intercomparison

Figure 2 shows domain-averaged energy flux, surface
temperature, and soil moisture results for TOPLATS
during the SMACEX period. Prior to 4 July, there is a
notable lack of precipitation and a steady reduction in
surface soil moisture. Comparisons with SMEX02 soil

moisture observations indicate that TOPLATS is accu-
rately capturing soil moisture dynamics within this time
period (Crow et al. 2005). TOPLATS latent heat flux
(LH) predictions during the dry down are nearly con-
stant and seem to reflect a rough equilibrium between
increasing vegetation cover (tending to increase LH)
and decreasing soil moisture (tending to decrease LH).
The dry down is interrupted by a series of precipitation
events between 4 and 10 July. These events increase
soil moisture and decrease predicted levels of H, Ts,
and G. The steady decrease in G predictions through-
out the period also reflects the reduction of the radia-
tion incident on the soil surface resulting from the sea-
sonal development of crop canopies.

Equivalent TSEB model energy flux predictions are
available for the three TM overpass times (1630 UTC
23 June 2002, 1645 UTC 1 July 2002, and 1650 UTC 8
July 2002). Spatial imagery of TOPLATS and TSEB
model LH and H predictions at all three times (Figs. 3
and 4) reveal significant differences between flux pre-
dictions made by the models. Relative to the TSEB
model, TOPLATS yields larger (smaller) LH (H) esti-
mates on 23 June (Figs. 3 and 4) and predicts signifi-
cantly more spatial variation in LH on 8 July (Fig. 3).
Spatial variability in 8 July TOPLATS flux predictions
is driven largely by variations in crop type with higher
LH predicted for cornfields relative to soybean fields.

FIG. 2. Time series of domain-averaged TOPLATS predictions.
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The TSEB model generally tends to predict smaller
corn/soybean contrasts, especially for wet conditions on
8 July. Relative to the TSEB model, TOPLATS also
predicts somewhat lower H values for cornfields on 1
July.

The accuracy of TOPLATS and TSEB model energy
flux predictions in Figs. 3 and 4 can be evaluated
through a comparison with available flux tower ob-
servations. Figure 5 plots the average for flux tower
observations of LH and H against the average of all
TOPLATS grid- cells within the estimated fetch of any
flux tower. Because tower-based observations of G and
Ts in Fig. 5 are essentially point-scale measurements,
TOPLATS results for these variables are based on av-
eraging model estimates for the 60-m pixel that is clos-
est to each tower location. TOPLATS appears to dem-
onstrate a reasonable level of skill in predicting tempo-
ral trends in energy fluxes and Ts. Nevertheless, several
shortcomings in TOPLATS predictions are apparent.
TOPLATS underpredicts LH from roughly 2 July on-
ward. Underpredicting LH excessively heats the sur-
face and results in the overprediction of Ts during the

same time period. TOPLATS also underpredicts H
throughout the experiment. It is worth noting that en-
ergy flux observations in Fig. 5 are closed by solving for
LH as the residual of Rn, H, and G measurements.
Closure via preservation of the observed Bowen ratio
(H/LH) would raise observed H slightly (up to 50 W
m�2) and exacerbate the low bias in TOPLATS H pre-
dictions.

The dotted vertical lines in Fig. 5 represent TM over-
pass times when TSEB model predictions of surface
energy fluxes are also available. Figure 6 shows scatter-
plots for TSEB and TOPLATS energy flux predictions
against flux tower observations at these overpass times.
As in Fig. 5, TSEB and TOPLATS pixels are fetch-
averaged results. Despite the problems noted in Fig. 5,
TOPLATS LH predictions for the three TM overpass
times are reasonably accurate and demonstrate a root-
mean-square (rms) error of 67 W m�2. This is slightly
larger than the rms error of 63 W m�2 that is calculated
for the TSEB model LH predictions. However, the ex-
cessive spread of TOPLATS LH predictions relative to
observations on 8 July implies that TOPLATS is over-

FIG. 3. Imagery of TOPLATS and TSEB LH estimates at cloud-free TM overpass times
within the modeling domain shown in Fig. 1.
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emphasizing variability due to corn/soybean vegetation
contrasts. On 8 July, TOPLATS LH predictions in
cornfields are biased high by 59 W m�2, and TOPLATS
soybean LH predictions are biased low by 97 W m�2.
Because corn tends to transpire more than soybeans
(higher LAI values), these biases combine to exagger-
ate the magnitude of the LH differences observed be-
tween corn- and soybean fields. TSEB model H predic-
tions in Fig. 6 are significantly more accurate than
comparable TOPLATS predictions, demonstrating
an rms error of 22 versus 46 W m�2 for TOPLATS.
A significant fraction of TOPLATS H error is the
result of a pronounced low bias in H predictions on
23 June.

b. Improving model performance

When combined with extensive SMACEX flux tower
observations, TOPLATS and TSEB results in section
4a can be used to evaluate prospects for designing error
filtering and/or model calibration techniques to merge
instantaneous RS-SVAT model predictions with con-
tinuous WEB-SVAT results.

1) LINEAR FILTERING

The successful filtering of errors in WEB-SVAT flux
results via the assimilation of RS-SVAT predictions re-
quires that modeling errors in both approaches be sub-
stantially independent. During SMACEX, the strategy
that is used for estimating spatial patterns of LH and H
by both models is sufficiently different that concurrent
energy flux errors in TOPLATS and TSEB model pre-
dictions are essentially independent (Fig. 7). Figure 8
demonstrates a simple example of filtering via the lin-
ear-weighted averaging of TOPLATS and TSEB re-
sults for a range of weight on TOPLATS predictions
WTOPLATS (WTSEB � 1 � WTOPLATS). Because of the
mutual independence of modeling errors, almost any
weighted combination of TOPLATS and TSEB LH re-
sults provides a filtered flux estimate that is superior, in
an rms sense, to either model in isolation. An optimal
choice of WTOPLATS near 0.5 is capable of filtering
nearly one-third of the LH error in both models. Be-
cause linear averaging, with variable weights deter-
mined from model and observation error/covari-
ance information, is the basis of many sequential data

FIG. 4. Imagery of TOPLATS and TSEB H estimates at cloud-free TM overpass times
within the modeling domain shown in Fig. 1.
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assimilation techniques, LH results in Fig. 8 pro-
vide important theoretical support for more complex
data assimilation schemes aimed at the integration of
WEB- and RS-SVAT LH predictions. However, be-
cause TOPLATS H predictions exhibit a negative bias
and are significantly less accurate than comparable
TSEB predictions, H results that are obtained by
weighted averaging improve upon TSEB H predictions
only for small values of WTOPLATS and then only mar-
ginally. That is, TSEB H results have a clear value for
improving TOPLATS H predictions but not vice versa.

2) MODEL CALIBRATION

The simple linear averaging procedure shown in Fig.
8 is effective for filtering LH errors, but possible only
for isolated times in which remotely sensed observa-
tions of Ts are available. An alternative possibility is the
development of model calibration approaches based on
the intercomparison of continuous TOPLATS predic-
tions with either instantaneous RS-SVAT flux predic-
tions (e.g., Franks and Beven 1999) or the Ts observa-
tions underlying RS-SVAT predictions (e.g., Crow et
al. 2003). Figure 9 establishes the basis for both

approaches during SMACEX by plotting differences
between TOPLATS and TSEB model predictions
(Figs. 9a and 9c) and TOPLATS Ts predictions and
satellite-based (TM) Ts observations (Figs. 9b and 9d)
against absolute errors in TOPLATS turbulent flux
predictions during the three TM overpass times. All
quantities plotted in Fig. 9 are based on averaging
within the assumed tower fetch area (see section 3a).
Provided that periodic remote observations of Ts are
available, quantities plotted on the x axis of Fig. 9 will
be available in an operational setting. The existence
of a significant correlation in Fig. 10 suggests that
TOPLATS flux errors (plotted on the y axis) can be
diagnosed via TOPLATS–TSEB flux differences and/
or TOPLATS–satellite Ts differences (plotted on the x
axis). A calibration strategy would exploit this correla-
tion and improve TOPLATS flux predictions (on the y
axis), by adjusting model parameters to minimize the
observed differences (on the x axis). It should be noted
that plots involving TOPLATS–satellite Ts differences
(Figs. 9b and 9d) do not appear to trend exactly through

FIG. 5. Averaged flux tower LH and H measurements vs aver-
age of TOPLATS predictions made within fetch area for flux
towers in Fig. 1. FIG. 6. Scatterplots of TOPLATS and TSEB LH and H predic-

tions made within flux tower fetch areas vs flux tower measure-
ments during cloud-free TM overpass times.
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the origin. Consequently, the complete removal of
TOPLATS–satellite Ts differences via calibration may
result in a positive (negative) bias for calibrated
TOPLATS LH (H) predictions. An analogous problem
does not appear to exist for calibration against TSEB
flux predictions (Figs. 9a and 9c).

Over vegetated areas, WEB-SVAT models make
predictions about the onset of water stress based on set
of calculations concerning soil moisture levels and the
availability of this water for plant uptake. These calcu-
lations can exhibit sensitivity to highly uncertain pa-
rameter values governing root water uptake, vertical
water flow within the root zone, and estimates of soil
water levels associated with the onset of water stress.
For example, increasing the plant resistivity value rp

that is used in (7) from the value of 2.5 � 108 s, which
was used for all previous TOPLATS results presented
here, to 7.5 � 108 s leads to a significant reduction in
TOPLATS LH predictions between 30 June and 3 July
by restricting the ability of roots to draw water from
deep soil layers and compensate for the drying of sur-
face layers. This restriction causes TOPLATS to
sharply underpredict LH values during this period. This
sensitivity is significant given the uncertainties in the
correct value of rp for various agricultural crops.

The response to variations in the rp parameter illus-
trates a common problem in WEB-SVAT modeling,
whereby model predictions exhibit sensitivity to param-
eter values that are poorly known. The only viable so-
lution in such circumstances is to develop model cali-
bration techniques that allow parameter values to be
derived from the calibration of model output against
available observations. Figure 10 presents a simple cali-
bration example where errors in TOPLATS LH pre-
dictions at flux tower sites on 1 July are plotted against
observed TOPLATS Ts errors and observed differences
between the TOPLATS and TSEB LH predictions for
a range of rp values. The first day of July is chosen
because it covers the driest period in the experiment
and the period of the highest sensitivity of TOPLATS
flux results to rp. Both plots demonstrate a significant
level of correlation and suggest that the selection of
parameters that minimize the observable quantities
on the x axis will also minimize the rms error in the
TOPLATS LH predictions. For example, using a typi-
cal literature value of 7.5 � 108 s for all corn- and
soybean fields (solid triangles in Fig. 10) yields an LH

FIG. 7. The relationship between TOPLATS and TSEB model
LH and H flux estimation errors. FIG. 8. Impact of weighted linear averaging of TOPLATS and

TSEB LH and H predictions on flux accuracy for a range of
weights.
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rms error of 141 W m�2 on 1 July. However, individu-
ally selecting rp parameters for each flux tower site that
minimize the difference between either TOPLATS and
satellite Ts (Fig. 10a) or TOPLATS and TSEB LH (Fig.
10b) reduces the TOPLATS rms error to 51 and 41 W
m�2, respectively. Calibrated values of rp range be-
tween 0.5 � 108 s and 5.0 � 108 s and offer some jus-
tification for the use of 2.5 � 108 s in prior simulations.

5. Discussion and summary

Both RS- and WEB-SVAT approaches are suffi-
ciently mature to form the basis of independent efforts
to operationally monitor the land surface at continental
scales [see Mitchell et al. (2004) for WEB-SVAT mod-
eling and Diak et al. (2004) for RS-SVAT modeling
efforts]. Despite these advances, relatively little work
has been done at intercomparing surface energy flux

predictions made by each model type. This study un-
derscores differences between the two approaches and
describes the potential benefits of integrating them.

The visual intercomparison of surface flux results
(Figs. 3 and 4) reveals significant differences between
predictions of turbulent energy fluxes during SMACEX
made by a RS-SVAT model (TSEB) and a WEB-
SVAT model (TOPLATS). These differences are inter-
preted using extensive flux observations during
SMACEX. TOPLATS energy flux predictions are able
to reproduce temporal trends in spatially averaged en-
ergy flux values (Fig. 5), but cannot match the accuracy
of the TSEB model in predicting instantaneous H and
LH magnitudes at specific tower sites (Fig. 6). The most
serious shortcoming in TOPLATS H predictions is the
overestimation of the flux contrasts between corn- and
soybean fields (Fig. 3). The overprediction of corn–
soybean contrasts appears especially stark on 8 July
following a period of extensive rainfall. This tendency is
not surprising, given that the TSEB model has access to
spatially explicit observations of Ts to guide flux pre-
dictions, while TOPLATS is forced to rely solely on

FIG. 9. Relationship between TOPLATS LH errors (relative to
flux tower observations) and (a) differences between TOPLATS
and TSEB model LH predictions and (b) differences between
TOPLATS Ts predictions and satellite (TM) Ts observations (c).
(d) Analogous plots, except for TOPLATS H errors.

FIG. 10. Relationship between 1 Jul TOPLATS LH errors and
(a) differences between TOPLATS Ts predictions and satellite
(TM) Ts observations, and (b) differences between TOPLATS
and TSEB model LH predictions for a range of choices for rp in
(7).
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explicit maps of vegetation type and uncertain rainfall
observations in order to produce spatially distributed
energy flux maps.

Nevertheless, WEB-SVAT models like TOPLATS
have two distinct advantages over RS-SVAT ap-
proaches. First, they are able to make temporally con-
tinuous predictions and are not limited by the sporadic
availability of remote Ts observations. Second, they are
able to predict soil moisture and subsurface soil tem-
perature states, which are critical for a number of key
applications for SVAT models, including the initializa-
tion of numerical weather prediction models and moni-
toring of soil water resources in agricultural areas.
Given that TSEB predictions are generally more accu-
rate and/or robust to parameterization uncertainties
[Fig. 6 and section 4b(2)], a logical extension of the
model intercomparison results is the development of
techniques that use diagnostic TSEB flux predictions to
update static TOPLATS parameters via model calibra-
tion or data assimilation techniques.

A critical prerequisite for any data assimilation tech-
nique aimed at filtering WEB-SVAT errors using RS-
SVAT energy flux predictions is the mutual indepen-
dence of errors in flux estimates made by both models.
If flux errors are highly correlated, RS-SVAT pre-
dictions will have little value for filtering WEB-
SVAT modeling errors. Figures 7 demonstrates that
RS- and WEB-SVAT modeling approaches are suffi-
ciently distinct so as to produce essentially indepen-
dent flux estimate errors. This demonstrates that op-
erational efforts centered on both RS- and WEB-
SVAT approaches may realize the immediate benefits
via the simple linear averaging of energy flux predic-
tions (Fig. 8). It also confirms the theoretical basis of
previous efforts to sequentially assimilate RS-SVAT
model predictions into WEB-SVAT approaches
(Schuurmans et al. 2003). In additional to data assimi-
lation, a second possibility for integrating WEB- and
RS-SVAT predictions is a model calibration approach
that attempts to improve the complex parameterization
required by WEB-SVAT models. Figure 9 establishes
the feasibility of this approach during SMACEX by
demonstrating the potential of improving TOPLATS
flux measurements relative to tower observations via a
data calibration approach relying on either TSEB LH
predictions or satellite Ts observations. Figure 10 pre-
sents a simple example of such calibration using an im-
portant TOPLATS rooting parameter. A key unan-
swered question is whether is it advantageous to cali-
brate TOPLATS using direct Ts observations (Fig. 10a)
or utilize RS-WEB flux predictions derived from such
observations (Fig. 10b). Both approaches demonstrate
merit during SMACEX.

It should be noted that, as defined here, RS- and
WEB-SVAT are extremely broad terms covering a
wide range of modeling approaches. In particular,
variations in energy flux predictions between WEB-
SVAT approaches are known to be large. Care should,
therefore, be taken when extrapolating results beyond
the two specific models (TOPLATS and the TSEB
model) examined here. Further study is also required to
determine if the results presented here are applicable to
the RS- and WEB-SVAT modeling strategies that are
currently employed at coarser spatial scales (�10 km)
in operational settings.
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