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[1] Limitations in the availability of ground-based
rain gauge data currently hamper our ability to quantify
errors in global precipitation products over data-poor areas
of the world. Over land, these limitations may be eased by
approaches based on interpreting the degree of dynamic
consistency existing between precipitation estimates and
remotely-sensed surface soil moisture retrievals. This
paper demonstrates how such an approach can be
implemented using a Kalman filter tuning procedure to
reliably estimate daily rainfall errors in global precipitation
products without reliance on ground-based rainfall
observations. Citation: Crow, W. T., and J. D. Bolten (2007),

Estimating precipitation errors using spaceborne surface soil

moisture retrievals, Geophys. Res. Lett., 34, L08403, doi:10.1029/

2007GL029450.

1. Introduction

[2] The validation of satellite-based precipitation
products with ground-based resources represents a notable
challenge - particularly in global areas lacking adequate
ground-based rain radar and rain gauge coverage [Amitai
et al., 2005]. Over land, these difficulties may be eased by
techniques that evaluate the degree of hydrologic
consistency existing between rainfall and other hydrologic
variables [McCabe et al., 2007]. In particular, the simulta-
neous spaceborne retrieval of both global precipitation and
surface soil moisture products provides an opportunity to
evaluate both products based on their mutual dynamic
consistency. Here we develop and apply a tuned Kalman
filtering strategy to the assimilation of spaceborne surface
soil moisture retrievals into a simple water balance model
forced by a range of individual precipitation products.
Modeling uncertainties derived via tuning of Kalman filter
error parameters - based on the statistical analysis of
filtering innovations - are compared with actual errors in
precipitation forcing products to evaluate whether the ap-
proach is capable of reliably estimating the accuracy of
global precipitation products in the absence of ground-based
rainfall observations. As an initial exercise, the technique is
applied to a data-rich area (the southern contiguous United
States) where extensive ground-based rain gauge observa-
tions are available to validate the approach. However, the
potential for exploiting remotely sensed soil moisture
retrievals to provide robust estimates of daily precipitation
errors in data-poor areas is emphasized.

2. Kalman Filtering

[3] Our technique is based on using uncertain daily
precipitation totals (P0) to drive a simple daily antecedent
precipitation index (API) model

APIi ¼ giAPIi�1 þ P0
i ð1Þ

where g is the API coefficient and i is a daily time index.
Following Crow and Zhan [2007], evapotranspiration
seasonality is captured by varying g according to day-of-
year (d)

gi ¼ aþ b cos 2pdi=365ð Þ: ð2Þ

Parameters a and b are constants and set equal to 0.85 and
0.10, respectively.
[4] When available, remotely-sensed soil moisture esti-

mates q are used to update equation (1) using a Kalman
filter

APIþi ¼ API�i þ Ki qi � API�i
� �

: ð3Þ

Here ‘‘�’’ and ‘‘+’’ denote API values before and after
Kalman filter updating. Following Reichle and Koster
[2005], daily q estimates are obtained by linearly rescaling a
time series of raw volumetric soil moisture retrievals such
that their long-term mean and variance match those derived
from a multi-year API time series. See section 4 for
additional details.
[5] The Kalman gain K in equation (3) is given by

Ki ¼ T�
i = T�

i þ S
� �

; ð4Þ

where T� is the scalar error variance in API forecasts and
S the scalar error variance in q retrievals. At measurement
times, T� is updated via

Tþ
i ¼ 1� Kið ÞT�

i : ð5Þ

[6] Between soil moisture measurements, and the adjust-
ment of API and T via equations (3) and (5), the API model
is temporally updated using observed P0 and equation (1). In
parallel, updated model forecast error T + is forecasted in
time following

T�
i ¼ gi

2 Tþ
i�1 þ Q ð6Þ

where Q relates the scalar error variance added to an API
forecast as it propagates from time i � 1 to i.
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[7] Of particular interest here are the model and obser-
vation noise variance parameters Q and S. Proper choices
for these parameters lead to a sequence of normalized filter
innovations (n), defined as

ni ¼ q� API�i
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�
i þ Sð Þ

q
; ð7Þ

that is both serially uncorrelated (rn(1) = 0) and has a
temporal second moment of one (E[n2] = 1) [Mehra, 1971].
Here, the entire modeling time period is repeatedly
simulated until constant values of Q and S are found
which approximately satisfy the rn(1) = 0 and E[n2] = 1
innovation constraints. As described in section 3, modeling
noise variance estimates obtained in this manner (Q̂) can
potentially be used to evaluate the accuracy of P0 rainfall
forcing in equation (1).

3. Tuned Kalman Filtering

[8] As a preliminary test, the filter calibration approach is
applied to the assimilation of surface soil moisture estimates
into equation (1) using a synthetic twin experimental
methodology. The experiment is based on: the generation
of a 10-year ‘‘truth’’ soil moisture data set using
an (assumed) error-free precipitation product (P) and
equation (1) for a 1� latitude/longitude box in the south-
central United States, the perturbation of these values
via additive Gaussian random error, and their subsequent
re-assimilation into equation (1) - now driven by a perturbed
precipitation product (P0 = aP), where a is a log-normal
random variable with mean ma, standard deviation sa and

serial correlation ra(1). Figure 1 shows results for the case
ofma = 1, ra(1) = 0, andsa equal to both 0.25 (rain product A)
and 1.0 (rain product B). The plotted lines in Figure 1 are
constructed from a large number of synthetic experimental
runs in which S is fixed at a range of values and Q is
modified until various innovation constraints are met. For
instance, upon assimilation of rain product A, the first
innovation constraint (innovation whiteness or rn(1) = 0)
is satisfied by the combination of assumed Q and S defined
by the dark dashed black line and the second constraint
(innovation second moment of one or E [n2] = 1) by
the solid dark black line. The single combination of
assumed Q and S (Q̂A and Ŝ) magnitudes satisfying both
constraints represents the model and observation noise
variances predicted by the tuned filter. Repeating the
experiment for rain product B (see lighter dashed and
solid lines in Figure 1) yields the same Ŝ estimate and a
larger estimate of Q̂ - accurately reflecting the increased
amount of model noise associated with utilizing the lower
accuracy rainfall product. Taken as a whole, Figure 1
suggests that the square-root of retrieved Q̂ magnitudes
obtained from the tuned filter may provide an accurate
estimate of the actual root-mean-square (RMS) accuracy of
precipitation products A and B.
[9] The ability of tuned filtering approaches to accurately

capture model forcing errors has been well-studied for
several decades [Mehra, 1971]. In the absence of any
Kalman updating, white noise in P0 will produce persistent
drifting in uncorrected API predictions obtained via
equation (1) and positively-correlated serial forecast errors.
During application of the Kalman filter, placing too much
weight on the API forecasts (via either an underestimation
of Q or an overestimation of S) will cause the filter to
diverge from an optimal estimate and produce subsequent
filtering innovations n with a positive serial correlation
(rn(1) > 0). Conversely, assuming the presence of
temporally uncorrelated observation errors, overreacting to
q observations (due to an overestimation of Q or an
underestimation of S) produces spurious, random correc-
tions to API. When compared to the true auto-regressive
model for API, such perturbations will manifest themselves
as negatively-correlated serial forecast errors and filter
innovations (i.e., rn(1) < 0). Calibrating assumed Q and
S magnitudes such that rn(1) = 0 ensures a correct
partitioning between forecasting and observation errors.
Since rn(1) is sensitive only to the ratio between Q and S,
a second constraint (E[n2] = 1) is required to fix an
absolute value for Q (Figure 1).
[10] Initial results in Figure 1 are based on a highly

idealized synthetic experiment. Additional difficulties will
arise when the statistical properties of actual precipitation
errors differ from those required for the optimal perfor-
mance of the Kalman filter. For instance, replicating the
experiment for biased (ma 6¼ 1) and/or serially-correlated
(ra(1) > 0) rainfall error can result in large differences
between the square root of Q̂ and actual RMS rainfall errors.
In addition, the ability of the approach in Figure 1 to
accurately estimate rainfall errors is based on an implicit
assumption that such errors are the dominant source of
model forecast uncertainty. This assumption is questionable
given the potential inadequacy of the simple soil water loss
parameterization in equation (1). The remainder of this

Figure 1. Utilizing a statistical analysis of filtering
innovations (n) in order to simultaneously estimate both
the API model noise variance Q and observation error
variance S (for an assimilated soil moisture product).
Results are shown for synthetic twin experiments based
on forcing the API model with a high (product A) and low
(product B) accuracy rainfall product.
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paper will clarify the actual value of Q̂ for rainfall product
evaluation by applying the approach in Figure 1 to a number
of real data cases.

4. Data and Approach

[11] Real data results are based on a single remotely-
sensed soil moisture data set and a range of global and
remotely-sensed precipitation products. Remotely-sensed
surface soil moisture estimates q� are obtained from appli-
cation of the single-polarization Jackson [1993] algorithm
to X-band Advanced Microwave Scanning Radiometer
(AMSR-E) brightness temperature (TB) data by Thomas
Jackson and Xiwu Zhan (USDA Hydrology and Remote
Sensing Laboratory). Moderate Resolution Imagery Spec-
trometer (MODIS) 16-day normalized difference vegetation
index (NDVI) composite products and the vegetation water
content (VWC)/NDVI regression relationship from Jackson
et al. [1999] are used to estimate VWC. Surface soil
moisture retrievals are acquired with a spatial resolution
of about 402 km2 and at a repeat time of 1 to 2 days at
mid-latitudes. Screening is performed to mask potentially
corrupted retrievals obtained during precipitation events.
Using simple spatial averaging, the soil moisture fields are
re-sampled onto a 1� latitude/longitude grid.
[12] Benchmark precipitation values are obtained from

the high density gauge-based National Center for Environ-
mental Prediction’s (NCEP) Climate Prediction Center
(CPC) retrospective rainfall product within the contiguous
United States. Hourly CPC data, processed as part of the
North American Land Data Assimilation System (NLDAS)
project [see Cosgrove et al., 2003], are aggregated in time
and space into daily (0 UTZ to 0 UTZ) accumulation
observations on a 1� spatial grid. In addition, eight separate
global and/or remotely-sensed precipitation products are
acquired to represent P0 in equation (1). They include:
(1) the 1� daily (1DD) Global Precipitation Climatology
Project (GPCP) multi-satellite rainfall product [Huffman et

al., 2001], (2) the Tropical Rainfall Measurement Mission
(TRMM) multi-sensor ‘‘3B42’’ product [Huffman et al.,
2007], (3) the real-time, microwave-only TRMM
‘‘3B40RT’’ product [Huffman et al., 2007], (4) the Air
Force Weather Agency (AFWA) multi-satellite product
generated by the Agricultural Meteorology (AGRMET)
modeling system, (5) the Precipitation Estimation from
Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) product [Sorooshian et al., 2000],
(6) the NCEP Stage IV rain gauge/ground-based radar
product, (7) a single World Meteorological Organization
rain gauge at 34.08�N, 102.37�W (WMO1), and (8) the
average of this gauge and a second WMO gauge located at
35.38�N, 102.16�W (WMO2). The last two solely gauge-
based products are included to represent rainfall measure-
ment errors typical from low-density, rain gauge networks
within data-poor areas. To match the reprocessed CPC data,
all precipitation products are resampled in time and space to
produce daily (0 to 0 UTZ) rainfall totals on a 1� grid.
[13] The tuned filtering approach is run over the entire

southern tier of the United States between 2002 July 1 and
2005 December 31 with a special focus on the southern
Great Plains (SGP) area (33 to 40�N and 105 to 100�W).
Prior to any assimilation, domain-scale API statistics are
obtained by averaging API temporal mean and standard
deviation for each 1� box in the appropriate domain (e.g.,
the SGP region in Figure 2). For these calculations, daily
API precipitation forcing is calculated by averaging across
the daily precipitation totals obtained from all the satellite-
based precipitation products. Raw volumetric q� retrievals
are then linearly rescaled such that their domain-averaged
temporal mean and standard deviation - now in water depth
dimensions - matches these API statistics. Since the API
model is run on a daily time-step, sub-daily variations in
modeled soil moisture are explicitly neglected.
[14] Our overall approach will be to derive Q̂ values for

all eight global/remotely-sensed rainfall products listed
above using AMSR-E surface soil moisture retrievals.

Figure 2. Over the southern United States the square root of Q̂ for the GPCP-1DD product derived using the Kalman filter
tuning procedure in Figure 1. The box represents the southern Great Plains (SGP) domain examined in Figure 3.
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Numerical optimization is performed using a two-step
approach in which the set of Q̂ and Ŝ combinations
satisfying the innovation second-moment constraint is
reduced to a single combination producing the whitest
innovations. Derived Q̂ will be compared to the daily
RMS error of rainfall products calculated versus the
benchmark NCEP CPC precipitation product to determine
what value, if any, Q̂ estimates have for evaluating the
accuracy of daily precipitation products in land regions of
the world lacking sufficient ground resources for traditional
gauge-based validation.

5. Results

[15] Figure 2 plots the square-root of Q̂ results for the
GPCP-1DD product over the southern tier of the United
States. Analogous plots were created for all eight global
and/or remotely-sensed precipitation products listed in
section 4 (not shown). Figure 3 summarizes the relationship

between Q̂ and the actual daily RMS accuracy of the rain
products - approximated here by calculating the daily RMS
difference between each product and benchmark rainfall
totals derived from the gauge-based NCEP CPC rainfall
data set. Each grey circle in Figure 3 represents results in a
single 1� box within the SGP domain for a given precipi-
tation product. All error values are calculated between 2002
July 1 and 2005 December 31. The well-defined linear
relationship between the square-root of Q̂ and actual rainfall
RMS error suggests that much of the validation information
derived from dense CPC rain gauge observations in the SGP
region can be replicated using Q̂ estimates based solely on
the tuned Kalman filtering of spaceborne soil moisture
retrievals. Black symbols plotted in Figure 3 are based on
averaging the square-root of Q̂ and rainfall RMS error for
each product across the SGP domain and highlight

the ability of Q̂ retrievals to resolve variations in
accuracy between products. At this coarser spatial
scale, trends in product RMS accuracy are reproduced
extremely well (R2 = 0.99) - demonstrating that the ap-
proach can make robust distinctions concerning the relative
accuracy of competing rainfall products in the absence of
ground-based rainfall observations. However, the relationship
in Figure 3 is not exactly one-to-one due to a least-squares
regression slope which is slightly less than one (0.90) and the
presence of a non-zero y-intercept (2.05 mm day�1). The
positive y-intercept represents a kernel of uncertainty in
API forecasts attributable to factors other than imperfect
rainfall forcing. Likewise, the slight reduction in regression
slope below one (i.e., the small loss in sensitivity of Q̂ to
rainfall RMS error in Figure 3) may be caused by a lack
of soil moisture retrievals during and immediately after
intense rainfall events when rainfall errors have the
strongest impact on surface moisture conditions and thus
estimated Q̂.
[16] It should be stressed that surface soil moisture

retrievals are likely to be considerably less accurate over
heavily vegetated surfaces, and results presented in Figure 3
are derived from a lightly vegetated portion of the United
States known to be particularly well-suited for the remote
sensing of surface soil moisture [Jackson et al., 1999].
Nevertheless, expanding the approach from the regional
SGP domain to the entire contiguous United States
(CONUS) south of 40�N leads to only a small reduction
in the strength of the domain-averaged correlation observed
between the square root of Q̂ and actual rainfall error (i.e., a

reduction in R2 from 0.99 to 0.96 for the black symbols in
Figure 3). Note that, due to their exceptionally sparse spatial
support at this expanded scale, the WMO gauge-based
rainfall products were not included in these Southern
CONUS results.
[17] An additional concern is that the some of the

satellite-based rainfall products used to establish the API
climatology, and rescale q� retrievals, are partially corrected
using rain gauge information. These corrections could
undermine the value of the approach by establishing a
potential dependence of Q̂ results on the availability of
ground-based observations. However, results in Figure 3
demonstrate relatively little sensitivity to the manner in
which this rescaling is performed. In fact, completely
neglecting potential climatological differences and directly
assimilating raw q� retrievals into equation (1) produces
almost identical results.

6. Summary

[18] The application of a tuned Kalman filter (Figure 1) to
the assimilation of a remotely-sensed surface soil moisture
product into a simple API model is demonstrated to provide
robust information concerning the relative level of RMS
error in daily, 1� latitude/longitude precipitation products
(Figures 2 and 3) within the SGP area of the United States.
Since Q̂ estimates are obtained without extensive ground-
based rainfall validation resources, they provide a poten-
tially valuable tool for evaluating (and/or calibrating) global
precipitation products in data-poor land areas and
underscore the potential synergy arising from concurrent

Figure 3. The square-root of model noise variance
estimates derived via Kalman filtering (Q̂) versus actual
daily RMS error in rainfall products (calculated against
NCEP CPC precipitation observations). Grey circles
represent results for individual 1� boxes within the SGP
domain and all eight rainfall products. Black symbols
represent SGP domain averages of grey circles for each
product.
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spaceborne retrievals of both rainfall and surface soil
moisture [Crow et al., 2006].
[19] While the presence of bias or/and auto-correlated

error can potentially affect the reliability of tuned filter error
estimates (section 3), initial results over data-rich areas of
the Southern United States appear robust. In addition, non-
random error sources could also conceivably be filtered
using existing techniques for long-term bias reduction in
global precipitation products [Smith et al., 2006]. Future
work will focus on these potential limitations and the wider
application of the approach to evaluate the accuracy of
competing global rainfall products over data-poor agricul-
tural production regions of the globe. In addition, the
expected future availability of higher-accuracy soil moisture
retrievals from planned L-band satellite missions [Kerr et
al., 2001] will likely enhance the performance of the
technique over vegetated surfaces.
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