

Increasing CO_2 from subambient to superambient concentrations alters species composition and increases above-ground biomass in a C_3/C_4 grassland

H. Wayne Polley¹, Hyrum B. Johnson¹ and Justin D. Derner²

¹Grassland, Soil and Water Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Temple, TX 76502, USA; ²High Plains Grasslands Research Station, U.S. Department of Agriculture, Agricultural Research Service, Cheyenne, WY 82009, USA

Summary

- Author for correspondence: Wayne Polley Tel: +1 254 770 6629 Fax: +1 254 770 6561 Email: wpolley@spa.ars.usda.gov
- Received: 01 May 2003 Accepted: 20 July 2003
- doi: 10.1046/j.1469-8137.2003.00897.x
- The glacial-to-present increase in atmospheric CO₂ concentration is likely to have stimulated plant production, but experimental tests in natural ecosystems are lacking.
- We measured above-ground biomass production, plant nitrogen (N) accumulation, and species dynamics in a C_3/C_4 grassland exposed for 4 yr (1997–2000) to a continuous gradient in CO_2 from 200–560 μ mol mol⁻¹.
- Biomass increased with CO_2 concentration in 1997–99. Biomass increases ranged between 121 and 161 g m⁻² per 100 µmol mol⁻¹ rise in CO_2 and were similar at subambient and superambient concentrations. Biomass responses to CO_2 were determined by different species or functional groups of species during different years. Increasing CO_2 accelerated a successional shift initiated by release from grazing in which C_3 forbs increased at the expense of a C_4 grass. Effects of CO_2 on tissue N concentration varied among species and functional groups, but CO_2 did not alter total N in above-ground tissues.
- Results imply that rising CO₂ has stimulated plant production and accelerated successional change and that grasslands will remain sensitive to rising CO₂ for several decades.

Key words: biomass production, C₃ species, C₄ grasses, CO₂ concentration, grassland, nitrogen concentration, nitrogen use efficiency, species composition.

© New Phytologist (2003) 160: 319-327

Introduction

Atmospheric CO₂ concentration has nearly doubled since the last glaciation (from < 200 μmol mol⁻¹; Petit *et al.*, 1999) and may reach 550 μmol mol⁻¹ during the next 50 yr (Alcamo *et al.*, 1996). Biological processes are fueled by carbon derived from CO₂, so the ongoing increase in CO₂ concentration almost surely has enhanced plant productivity and affected ecosystem processes. Indeed, the large proportional increase in CO₂ since glaciation has been implicated in a variety of changes including shifts in vegetation (Johnson *et al.*, 1993; Ehleringer *et al.*, 1997; Street-Perrott *et al.*, 1997), stimulation of forest production and tree turnover rates (Phillips & Gentry, 1994), and an increase in soil carbon sequestration (Gill *et al.*, 2002). Yet, direct evidence from intact ecosystems for most of these trends is lacking.

Most experiments at subambient CO₂ have been conducted with simplified plant communities under conditions favorable for plant growth (Baker *et al.*, 1990; Allen *et al.*, 1991; Dippery *et al.*, 1995). In more natural ecosystems, CO₂ effects are influenced by plant community composition and plant accumulation and utilization of N and other limiting elements. Effects of CO₂ enrichment on production may be small in communities that are dominated by C₄ species (Owensby *et al.*, 1999), but atmospheric change also may increase the abundance of species that are responsive to CO₂ (Stöcklin *et al.*, 1998; Niklaus *et al.*, 2001). Nitrogen limitation, by contrast, usually dampens plant sensitivity to CO₂ enrichment (Poorter & Pérez-Soba, 2001).

We exposed a C_3/C_4 grassland in central Texas, USA to a 200–560 μ mol mol⁻¹ gradient in CO_2 concentration for 4 yr following the exclusion of cattle to determine effects of

prehistorical to predicted CO₂ levels on grassland productivity. Because primary production and its response to CO₂ are sensitive to plant N accumulation and species composition and dynamics, we measured N in above-ground tissues of dominant species and functional groups of plant species and assessed relationships between species dynamics and CO₂. Results from mostly greenhouse and growth chamber experiments indicate that plant growth is highly responsive at subambient CO₂ concentrations (Baker et al., 1990; Allen et al., 1991; Dippery et al., 1995; Grünzweig & Körner, 2001) and that C₃ species are favored over C₄ species by increases in CO₂ at subambient concentrations (Johnson et al., 1993). Consequently, we predicted that CO₂ enrichment would increase C₃ contribution to biomass production and consistently stimulate grassland biomass at subambient concentrations. Resource-based models of community composition predict that the species composition of plots differing in resource supply should become less similar or should diverge with time (Inouye & Tilman, 1988). We predicted therefore that the species composition of grassland plots exposed to different CO₂ concentrations would become increasingly dissimilar and that the magnitude of divergence in composition would increase with differences in CO₂ treatment. Consistent with results from other studies (Owensby et al., 1993; Morgan et al., 2001), we predicted that tissue N concentration would decline and that plant nitrogen use efficiency would increase as CO₂ concentration increased.

Materials and Methods

CO₂ chambers / Research site

We studied effects of atmospheric CO $_2$ enrichment on a C $_3$ /C $_4$ grassland in central Texas, USA (31°05′-N, 97°20′-W) with elongated field chambers that control CO $_2$ along continuous gradients from subambient to superambient concentrations (Johnson *et al.*, 2000). The site previously was cultivated, but has been managed as grassland and grazed by cattle for at least 50 yr. Cattle were excluded in 1992 before construction of chambers. Soils at the study site are classified as fine-silty, carbonatic, thermic Udorthentic Haplustolls. The surface 0.4 m of soil is composed mostly (55%) of clay. Annual precipitation at the site averages 879 mm (89-years average). Annual rainfall was greater than average in 1997, 1998, and 2000 (1143, 1043, and 903 mm), but was only 52% of the 89-yr mean during 1999 (461 mm).

The CO₂ facility consists of two transparent, tunnel-shaped chambers, each with 10 consecutive compartments that are 1 m wide and tall and 5 m long (Johnson *et al.*, 2000). Pure CO₂ is injected into one chamber during daylight to initiate a superambient CO₂ gradient ($560-350 \mu mol \ mol^{-1}$). Ambient air is introduced to the second chamber to initiate a subambient CO₂ gradient ($365-200 \mu mol \ mol^{-1}$). Night-time CO₂ concentrations are regulated at about 150 $\mu mol \ mol^{-1}$

above daytime values along each chamber. Desired CO_2 concentration gradients are maintained by automatically varying the direction (daylight, night) and rate of air flow through chambers in response to changes in photosynthetic (daylight) or respiration rates (night). Air temperature and vapour pressure deficit are regulated near ambient values by cooling and dehumidifying air at 5-m intervals along chambers. Soil beneath chambers is separated from surrounding soil to a depth of 0.9 m with a rubber-coated fabric.

A continuous gradient in CO_2 from 560 to 200 µmol mol⁻¹ was maintained on this grassland dominated by the C_4 perennial grass *Bothriochloa ischaemum* (L.) Keng and C_3 perennial forbs *Solanum dimidiatum* Raf. and *Ratibida columnaris* (Sims) D. Don during growing seasons (March–November) of 1997 through 2000. Johnson *et al.* (2000) described in detail regulation of CO_2 concentration and environmental parameters along chambers.

Irrigation equivalent to rainfall was applied to the chambered grassland on the day following precipitation through July 1999. We eliminated runoff when irrigating, so soil sometimes was wetter beneath than outside of chambers. To better approximate soil water content in surrounding grassland, the irrigation regime was altered in August 1999. Subsequently, the amount of water applied to the entire system was determined weekly by subtracting the water content of soil in the chamber compartment maintained at 360 μ mol mol⁻¹ from the mean soil water content (n = 5) measured along a 50-mlong transect in adjacent *Bothriochloa*-dominated grassland. Water addition was calculated from weekly measurements of volumetric soil water content to 1.35 m depth in the center of chamber compartments and along the unchambered transect with a neutron probe.

Sampling

Following imposition of CO₂ treatments, vegetation in the 0.5-m long and 1.0-m wide area immediately before and after each cooling coil was clipped monthly to ground level to minimize plant interference with air flow through coils, leaving 4 m^2 (4 m × 1 m) of vegetated area in each compartment for CO₂ experiments. Above-ground production was determined during each year of CO₂ treatment (1997–2000) by clipping all vegetation in the center 4-m² area of each chamber compartment to 5 cm height at the end of the growing season in early December. To estimate accumulation of N in actively growing above-ground tissues, we harvested two 0.5 m \times 0.2 m (0.1 m²) areas from each 4-m² area during June and October of each year. These harvests were timed to correspond with periods of peak biomass of early season (June) and late-season species (October) in this grassland. Harvests were systematically allocated among adjacent 0.5 m × 0.2 m quadrats that spanned the 1 m width of compartments and that were located at two positions, 1 m from the air entrance and 1 m from the air exit of each 5-m long compartment.

At each harvest, plants were sorted by species and weighed after oven drying for 72 h at 60°C. For some analyses, biomass also was calculated for each of five functional groups of species (C₄ grasses, C₃ grasses, C₃ annual forbs, C₃ perennial forbs, and legumes). To minimize effects of harvesting on element cycling, plant material that was removed in December was returned in January before the next growing season to the 1 m² area in compartments from which it was harvested. Before plant material was returned, it was shredded with a wood chipping machine to simulate effects of late-season mowing that commonly is applied to grasslands in central Texas.

Plant tissue (green + senescent) removed from the two 0.1 m² plots during June and October of each year was assigned to functional groups. Nitrogen accumulation of each functional group was estimated by multiplying the value of peak biomass for the group by the N concentration of biomass. The total of above-ground N accumulation per year for vegetation was estimated by summing these values of peak N across functional groups for each compartment along the CO₂ gradient. The nitrogen use efficiency (NUE) of vegetation was calculated by dividing above-ground biomass by N contained in live plus dead above-ground tissues (productivity per unit of N accumulation).

Photosynthetic photon flux density (light) was measured at the soil surface, at 0.5 m above the surface, and above the plant canopy in the center of each compartment. Light was measured at mid-day on single days in May and October of each year with a 1-m long sensor (SunScan, Delta-T Devices, Ltd) placed diagonally across each of two 1-m² plots per compartment.

Species composition

For each year, we calculated the 'similarity' in vegetation between pairs of chamber compartments using Sorensen's community coefficient (CC) weighted by biomass harvested in December (Barbour et al., 1980).

Sorensen's CC = 2MC/(MA + MB),

(MA, summation of percentage of total biomass harvested from compartment A that is attributable to each species; MB, summation of percentage of total biomass harvested from compartment B that is attributable to each species; and MC, summation of minimum values of percentage of total biomass for each species common to compartments A and B.) Like other indices of community similarity, Sorensen's CC is a measurement of species shared between sampling units. Unlike the commonly used Jaccard's index as applied to weighted data, Sorensen's CC has the desirable property of ranging between 0 (complete difference) and 1 (identity). We tested for divergence in species composition along the CO₂ gradient by plotting values of Sorensen's CC calculated for all possible pairs of chamber compartments vs differences in CO₂ concentration. As an index of species shared by compartments, Sorensen's CC should decline as differences in CO₂ concentration increase if CO₂ treatments influence species composition and abundances.

Statistics

The relationship between CO₂ concentration during daylight and distance along both superambient and subambient chambers was slightly curvilinear (Johnson et al., 2000). From these relationships, we calculated mean CO₂ concentration for each 5-m compartment along chambers. These CO₂ concentrations were used as the independent variable in regression analyses with biomass, N concentration and content, and parameters descriptive of species composition as dependent variables (P < 0.05 significance level). To accommodate a variety of possible response curves, we fit linear, hyperbolic, power, and logarithmic functions to data. The model with the greatest r^2 value was deemed the best fit. Differences among sampling years in light interception by plants were tested with single degree of freedom contrasts.

Results

Vegetation

Vegetation changed considerably during the 4 yr of this study, from dominance by C₄ grasses to codominance by C₄ grasses and C₃ perennial forbs (Fig. 1). Among individual species, *Bothriochloa* exhibited the most striking change. This C_4 grass alone comprised almost 60% of biomass harvested from chambers following the first season of CO₂ treatment, 1997. Contribution of *Bothriochloa* to end-of-season biomass declined to 24-25% in 1999 and 2000, partly because of an increase in abundances of taller perennial forbs Ratibida columnaris, Solanum dimidiatum, and Solidago canadensis. As abundances of forbs increased, light interception by taller plants also increased. Of total light intercepted by plants, the fraction intercepted above 0.5 m height was greater during the final 3 yr of the experiment than during the initial year of 1997 (linear contrasts, P < 0.0001, n = 20 values per year), whether measured in May (means = 0.05 and 0.24 in 1997 and across subsequent years) or October (means = 0.16 and 0.29 in 1997 and across subsequent years).

There was no relationship between Sorensen's CC, calculated using biomass per species of the total of 71 species encountered, and CO₂ during the 4 yr of this experiment (not shown). Species also were grouped by photosynthetic pathway (either C₃ or C₄) or into one of five functional groups before calculating Sorensen's CC between each pair of chamber compartments. Neither of these calculations of vegetation similarity was related to differences in CO₂ treatment (not shown). The absence of a relationship between Sorensen's CC and CO₂ across years indicates that CO₂ played little role in

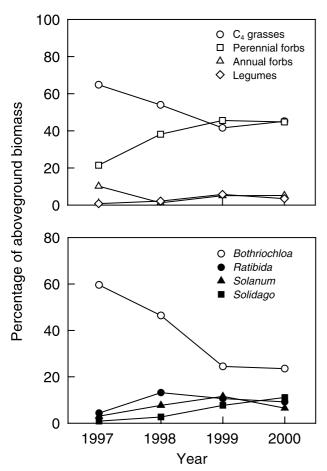
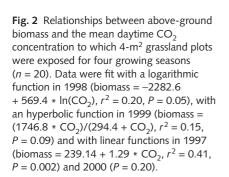


Fig. 1 Percentage contribution of each of four functional groups of species (upper panel) and of four dominant species (lower panel) to above-ground biomass harvested at the end of each season of $\rm CO_2$ enrichment. Values are averages across 4-m² grassland plots along the $\rm CO_2$ gradient (n=20). $\rm C_3$ grasses comprised < 3% of total biomass in each year, so these data were omitted to improve clarity.

species composition during the experiment. Heterogeneity in species mixtures increased with time, irrespective of CO_2 treatment. Averaged across pair-wise comparisons of chamber compartments, values of Sorensen's CC that were calculated using biomass per species declined from 0.53 in 1997 to 0.29 in 2000 (values were 0.48 in 1998 and 0.31 in 1999, n = 190).

Above-ground biomass

Averaged across CO_2 concentrations, above-ground biomass was greater during the final 3 yr of treatment (means = 1086, 962, 1131 g m⁻² in 1998, 1999, and 2000; n = 20) than during the initial year of 1997 (mean = 737 g m⁻²; n = 20). Above-ground biomass increased significantly from subambient to superambient CO_2 concentrations in 1997 and 1998 and increased marginally (P = 0.09) with greater CO_2 concentration in 1999 (Fig. 2). Biomass production was best described by a positive, linear function of CO_2 in 1997 and by curvilinear


functions (logarithmic and hyperbolic) in 1998 and 1999. There was no relationship between above-ground biomass and CO_2 in 2000 (P=0.20). Although there was considerable scatter in relationships between production and CO_2 , mean responses of biomass to CO_2 often were dramatic. We estimate from regression, for example, that in 1997 above-ground production increased by 86% (from 510 to 949 g m⁻²) as CO_2 rose from 210 to 550 µmol mol⁻¹. Across the full CO_2 gradient, biomass production increased by a mean of between 121 g m⁻² (1999) and 161 g m⁻² (1998) per 100 µmol mol⁻¹ increase in CO_2 concentration.

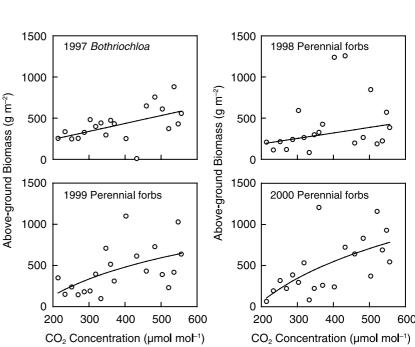
Much of the increase in above-ground biomass during the initial year of $\rm CO_2$ exposure (1997) occurred in *Bothriochloa* (Fig. 3). As estimated from regression, biomass of the dominant $\rm C_4$ grass more than doubled with the 210–550 µmol mol $^{-1}$ increase in $\rm CO_2$ concentration. This increase in *Bothriochloa* biomass accounted for 75% of the stimulation of community biomass by higher $\rm CO_2$ during 1997. In subsequent years, however, there was no relationship between production of the $\rm C_4$ grass and $\rm CO_2$ (not shown; P=0.48, 0.60, and 0.48 in 1998, 1999, and 2000). Biomass of *Bothriochloa* declined precipitously during the 1999 season, by an average of 245 g m $^{-2}$ across $\rm CO_2$ treatments.

As biomass of the dominant grass declined, above-ground production of perennial forbs (including Ratibida columnaris, Solanum dimidiatum, and Solidago canadensis) increased from an average of 161 g m⁻² in 1997 to greater than 400 g m⁻² in subsequent years (means = 402, 441, 495 g m⁻² in 1998, 1999, and 2000; n = 20). Biomass of these C_3 species was not related to CO_2 treatment during 1997 (P = 0.39), but increased marginally (P = 0.10) at higher CO₂ during 1998 when 2 outlier points were excluded and increased significantly with CO_2 concentration during 1999 (P = 0.016) and 2000 (P = 0.003; Fig. 3). In each of the final two years of the experiment, CO₂ effects were dramatic. Across the full CO₂ gradient, we estimate from the curvilinear functions fit to biomass-CO₂ relationships that production of perennial forbs increased by a factor of 4 in 1999 and of 7 in 2000. Indeed, forb biomass increased slightly more at higher CO₂ than did total biomass during 1999 and increased during 2000 despite the absence of a CO₂ effect on production of all species combined (Fig. 2). Clearly then, biomass of other species must have declined as CO₂ and forb biomass increased during 1999 and 2000. Much of this decline in biomass occurred in Bothriochloa (Fig. 4). During the final 3 yr of the experiment (1998–2000), aboveground biomass of this C4 grass decreased more at elevated than at subambient concentrations.

Nitrogen

Nitrogen accumulation of vegetation was estimated for each year from values of peak N of 5 functional groups of species as determined from harvests of 0.1 m² plots. In no year did above-ground N accumulation change significantly with CO₂

2000


1997

1500 1500 1000 1000 Above-ground Biomass (g m⁻²) Above-ground Biomass (g m⁻²) 00 0 0 0 00 500 500 °° 0 0 2000 2000 1999 2000 o 1500 1500 1000 1000 00 000 0 0000 500 500 0 400 400 500 200 300 500 600 200 300 600 CO₂ Concentration (µmol mol⁻¹) CO₂ Concentration (µmol mol⁻¹) 1500 1500 1998 Perennial forbs 1997 Bothriochloa

2000

1998

Fig. 3 Relationships between above-ground biomass production of Bothriochloa, the dominant C4 grass, and of C3 perennial forbs and the mean daytime CO2 concentration to which $4-m^2$ plots were exposed (n = 20). Data were fit with linear functions in 1997 (biomass = 49.44 + 0.96 * CO₂, r² = 0.29, P < 0.014)and in 1998 following exclusion of two outlying points (biomass = $53.0 + 0.67 * CO_2$, $r^2 = 0.16$, P = 0.10, n = 18) and with logarithmic functions in 1999 (biomass = -2540.2 + 504.0 * ln(CO₂), r² = 0.28,P = 0.02) and 2000 (biomass = -3695.6 + 708.4 * ln(CO₂), r² = 0.40,P = 0.003). Biomass-CO₂ relationships were not significant for perennial forbs in 1997 (P = 0.39) or for *Bothriochloa* in 1998 (P = 0.48), 1999 (P = 0.60), or 2000 (P = 0.48). These data were omitted to improve clarity.

concentration (P ranged between 0.16 and 0.50; mean N ranged between 7.6 and 15.1 g N m⁻², n = 20).

Carbon dioxide enrichment frequently reduced tissue N concentration, but CO_2 effects varied among years and functional groups of species. As determined from regression, the N concentration of C_4 grasses (including *Bothriochloa*) declined by 27% in 1997 and 1998 as CO_2 concentration increased from 215 to 550 µmol mol^{-1} (Fig. 5). The N concentration of C_4 grasses as a group did not vary significantly with CO_2 treatment in either 1999 (P = 0.67) or 2000 (P = 0.40). Nitrogen concentration of the dominant C_4 grass *Bothriochloa*

declined slightly more across subambient than superambient CO_2 concentrations in both 1998 and 1999 (Table 1), but was not significantly related to CO_2 treatment in 2000 (P= 0.89). Across measurements from 1998 and 1999, N concentration of perennial forbs declined more per unit increase in CO_2 over subambient than superambient concentrations (Fig. 5). The mean decrease in N concentration at subambient CO_2 was greater by more than an order of magnitude in perennial forbs than C_4 grasses. There was no relationship between N concentration of perennial forbs and CO_2 in either 1997 (P= 0.86) or 2000 (P= 0.92).

Fig. 4 Relationships between the change in above-ground biomass production of the C_4 grass *Bothriochloa* and of C_3 perennial forbs during 1998 through 2000 and the mean daytime CO_2 concentration to which 4-m^2 plots were exposed (n=20). Data for perennial forbs were fit with a linear function (biomass = $-253.58 + 1.52 * CO_2$, $r^2 = 0.18$, P = 0.06), and data for *Bothriochloa* was fit with a logarithmic function (biomass = $2562.0 - 462.6 * \ln(CO_2)$, $r^2 = 0.35$, P = 0.006).

The NUE of vegetation, defined as the ratio of above-ground biomass production to above-ground N content, increased with CO_2 concentration only in 1998 (Table 1; P = 0.36, 0.16, and 0.29 in 1997, 1999, and 2000). Although higher CO_2 frequently reduced the N concentration of dominant species, heterogeneity in species composition combined with the increased abundance of N-rich forbs at high CO_2 (Fig. 3) eliminated any CO_2 effect on NUE of the plant community during most years.

Discussion

Biomass production

Increasing CO₂ from prehistorical to predicted concentrations increased above-ground biomass of the C₃/C₄ grassland studied during the first 3 yr of the experiment, despite the absence of a CO₂ effect on plant N accumulation. Scatter in relationships between biomass and CO₂ limited our ability to define the shape of biomass-CO₂ relationships, but the average response of biomass to CO₂ in this intact grassland was similar at subambient and superambient concentrations. As expected, tissue N concentration often declined, but the decrease was not consistent across functional groups of species and varied among years for individual groups and species. Vegetation changed dramatically during the experiment. At the species level, the shift in plant composition and accompanying increase in compositional heterogeneity were not related to CO₂ treatment. Nor did CO₂ treatments change the relative contributions of C₃ and C₄ plants to biomass. But the predominant shift in vegetation during this experiment,

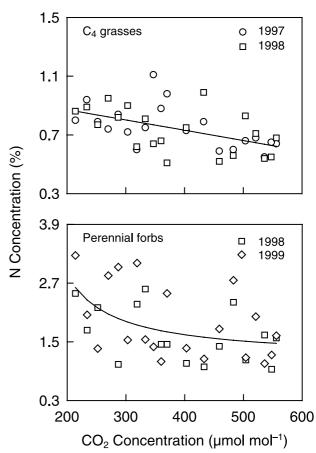


Fig. 5 The N concentration of above-ground tissues of C_4 grasses and of C_3 perennial forbs at peak biomass as a function of the CO_2 concentration at which plants were grown. Note that scale of the y-axis differs between upper and lower panels. Data from 1997 and 1998 for C_4 grasses were fit with a linear function ([N] = 1.0120 – 0.0007 * CO_2 , $r^2 = 0.28$, P = 0.0004, n = 39). Data from 1998 and 1999 for forbs were fit with a hyperbolic function ([N] = $(1.15 * CO_2)/(CO_2-119.29)$, $r^2 = 0.23$, P = 0.003, n = 36). Results of regression analyses on data from individual years are listed in Table 1. Nitrogen concentration did not change significantly with CO_2 concentration in 1999 or 2000 for C_4 grasses (means = 0.85% and 0.79%) or in 1997 or 2000 for perennial forbs (means = 1.45% and 1.54%).

from dominance by the C_4 grass *Bothriochloa* to codominance with C_3 perennial forbs, clearly was amplified by CO_2 enrichment.

The 350 μmol mol⁻¹ increase in CO₂ concentration studied here is similar in magnitude to that employed in other CO₂ experiments on grasslands, but proportional increases in biomass during this experiment were larger than typically measured in grasslands. As calculated from regressions, for example, above-ground biomass rose by between 56% and 86% in 1997 through 1999 with the increase in CO₂ from 210 to 550 μmol mol⁻¹. Below-ground production was 50% greater at elevated than subambient concentrations (Gill *et al.*, 2002). Biomass responses to CO₂ enrichment vary from nil in alpine grassland (Schappi & Körner, 1996) to

Table 1 Results of significant regression analyses between above-ground N and CO_2 over a 200–560 μ mol/mol⁻¹ gradient (n = 20)

Year/ parameter	Model type	Slope or a value	Intercept or b value	r ²	<i>P</i> -value
[N] C ₄ grasses	Linear	-0.0007	1.02	0.30	0.01
1998					
[N] C ₄ grasses	Power	6.48	-0.37	0.29	0.01
[N] Bothriochloa	Hyperbolic	0.525	-64.00	0.14	0.05
[N] perennial forbs	Hyperbolic	1.11	-110.82	0.24	0.05
NUĖ	Linear	0.122	53.43	0.18	0.06
1999					
[N] Bothriochloa	Hyperbolic	0.83	-33.56	0.19	0.03
[N] perennial forbs	Linear	-0.003	3.09	0.21	0.04

Nitrogen use efficiency (NUE) is the ratio of above-ground biomass (determined by summing peak biomasses of 5 functional groups of species) to N content of that biomass. Linear (y = ax + b), hyperbolic [y = ax/(b + x)], or power $[y = ax^b]$ functions were fit to relationships of two parameters [y]; tissue N concentration (%) and NUE (g biomass g N⁻¹)] to CO₂ concentration (x; μ mol mol⁻¹). There were no significant relationships between N and CO₂ in 2000.

increases ranging between about 20% and 50% in annual grassland (Hungate et al., 1997; Shaw et al., 2002), calcareous grassland (Leadley et al., 1999), tallgrass prairie (Owensby et al., 1999), and shortgrass steppe (Morgan et al., 2001). The rather large responses of above-ground biomass to CO₂ during initial years of this experiment apparently derived from large and usually linear increases in leaf and canopy photosynthesis (Anderson et al., 2001; Mielnick et al., 2001) and in leaf water use efficiency over subambient to superambient concentrations (Anderson et al., 2001; Maherali et al., 2002; Polley et al., 2002).

Although constrained by scatter in biomass-CO₂ relationships, our results provide little evidence that above-ground biomass is more responsive to CO₂ at subambient than superambient concentrations. Biomass-CO2 relationships were slightly curvilinear with greatest increase over subambient concentrations for the grassland community in 1998 and 1999 and for perennial forbs in 1999 and 2000. In other years, however, biomass was better described by a linear function of CO₂ concentration. Experimental evidence that plant production is more responsive to CO₂ at subambient than at superambient concentrations comes mostly from greenhouse or growth chamber studies that typically were of short duration or were conducted under conditions favorable for plant growth (Baker et al., 1990; Allen et al., 1991; Dippery et al., 1995; Grünzweig & Körner, 2001). Conditions in natural and seminatural ecosystems frequently are more demanding of plants and may involve species change or other feedbacks between plants and the environment that dampen plant responses to CO₂ or contribute to temporal variability in CO_2 effects. In the C_3/C_4 grassland that we studied, biomass response to CO₂ apparently was influenced by one of these feedbacks, vegetation change. Nevertheless, increasing CO₂ from the pre-Industrial to current concentration (270–370 μmol/mol⁻¹) elicited a 20-22% increase in above-ground biomass during 1997 and 1998.

Carbon dioxide enrichment increased grassland production despite having no effect on N accumulation in above-ground tissues. Reduced N concentration is a common response to CO₂ enrichment (Cotrufo *et al.*, 1998; Körner, 2000). It is noteworthy therefore that in this experiment responses of N concentration to CO₂ varied among functional groups and years. Responses to CO₂ varied even within an individual species. The N concentration of *Bothriochloa*, for instance, declined as CO₂ increased during the first two years examined, but was not related to CO₂ treatment during a third year. Variability in response obviously complicates prediction and cautions against generalization.

Carbon dioxide enrichment increased biomass during the first 3 yr of this study despite temporal changes in species abundances and despite interannual differences in responses of species or groups of species to CO₂. Consequently, positive responses of biomass to CO₂ enrichment were determined by different species or by different functional groups of species during different years. Much of the increase in above-ground biomass during 1997 occurred in *Bothriochloa*. By 1999, CO₂ effects on grassland production were determined largely by the positive response of perennial forbs to CO₂.

Species composition

Species composition affects the response of plant production to CO₂ (Niklaus *et al.*, 2001; Reich *et al.*, 2001), but CO₂ enrichment, in turn, may influence the contribution of species to community biomass (Leadley *et al.*, 1999; Niklaus *et al.*, 2001). The predominant shift in vegetation during this experiment, greater production of perennial forbs at the expense of C₄ grasses, clearly was amplified by CO₂ enrichment across the full subambient to superambient gradient. Several studies have shown that CO₂ enrichment favors forbs over grasses (Potvin & Vasseur, 1997; Leadley *et al.*, 1999; Owensby *et al.*,

1999; Teyssonneyre et al., 2002), although the trend is not universal (Morgan et al., 2001). Superficially, this increase in forbs is consistent with a long-standing prediction that CO₂ enrichment favors C₃ over C₄ plants by preferentially stimulating photosynthesis and growth of C₃ species. But, relative abundances of C₃ and C₄ species did not respond predictably to CO₂ in this experiment, consistent with results from grassland studies at elevated CO₂ (Owensby et al., 1999; Morgan et al., 2001) but contrary to trends measured in salt marsh (Arp et al., 1993) and in some reconstructed communities at subambient concentrations (Johnson et al., 1993, but see Ward et al., 1999). As evidenced by the increase in Bothriochloa biomass during 1997, possession of the C₄ metabolism does not preclude a CO₂ response even to elevated concentrations. Rather than simply reflecting CO₂ effects on C₃–C₄ balance, the increase in forb production probably was related to differences in plant morphology and growth habit (Bazzaz & McConnaughay, 1992), to release from grazing (Potvin & Vasseur, 1997), to differing sensitivities of grasses and of more deeply rooting forbs to droughts, or to some combination of these and other factors. Above-ground biomass of Bothriochloa decreased during 1998, a year with a 6-months drought during mid-season (Polley et al., 2002), and declined precipitously during the drought year of 1999. Xylem potentials were more sensitive to changes in soil water in the grass than in a perennial forb (Polley et al., 2002), suggesting that grasses were especially disadvantaged by drought. Perennial forbs increase in abundance following the release of *Bothriochloa*-dominated grassland from grazing (Wilsey & Polley, 2003). In this grassland as in tallgrass prairie (Owensby et al., 1999), taller growth forms may eventually dominate ungrazed communities at ambient and higher CO₂ concentrations irrespective of physiological sensitivities to CO₂. That this shift from grasses to forbs was amplified as CO₂ increased indicates that CO₂ enrichment may speed successional changes in the composition of this grassland following release from grazing. Elevating CO₂ above the ambient concentration favored dicots over grasses in the pasture community studied by Potvin & Vasseur (1997), but this CO₂ effect slowed rather than accelerated successional change.

Conclusions

Our results provide the first evidence in an intact ecosystem for an increase in above-ground production and shift in plant composition over subambient to superambient CO_2 concentrations. Biomass increased despite temporal changes in the responses of biomass and tissue N to CO_2 among species and species groups. Increasing CO_2 accelerated a successional shift in vegetation from the dominant C_4 grass to perennial forbs. The continuous response to CO_2 of above-ground biomass, plant N concentration, and grass-forb relative abundances in this $\mathrm{C}_3/\mathrm{C}_4$ grassland indicates that grasslands may remain sensitive to CO_2 as concentration rises to twice the pre-Industrial level during coming decades.

Acknowledgements

Ron Whitis maintained CO₂ chambers. Anne Gibson, Katherine Jones, Chris Kolodziejczyk, and Kyle Tiner helped with harvests and processed samples, and Joaquin Sanabria contributed statistical guidance. William Dugas, Richard Gill, Robert Jackson, Hafiz Maherali, and Patricia Mielnick provided helpful comments on the manuscript.

References

- Alcamo J, Kreileman GJJ, Bollen JC, van den Born GJ, Gerlagh R, Krol MS, Toet AMC, de Vries HJM. 1996. Baseline scenarios of global environmental change. Global Environmental Change 6: 261–303.
- Allen LH Jr, Bisbal EC, Boote KJ, Jones PH. 1991. Soybean dry matter allocation under subambient and superambient levels of carbon dioxide. Agronomy Journal 83: 875–883.
- Anderson LJ, Maherali H, Johnson HB, Polley HW, Jackson RB. 2001. Gas exchange and photosynthetic acclimation over subambient to elevated CO_2 in a C_3 – C_4 grassland. *Global Change Biology* 7: 693–707.
- Arp WJ, Drake BG, Pockman WT, Curtis PS, Whigham DF. 1993. Interactions between C₃ and C₄ salt marsh plant species during four years of exposure to elevated atmospheric CO₂. *Vegetatio* 104/105: 133–143.
- Baker JT, Allen LH Jr, Boote KJ. 1990. Growth and yield responses of rice to carbon dioxide concentration. *Journal of Agricultural Science, Cambridge* 115: 313–320.
- Barbour MG, Burk JH, Pitts WD. 1980. Terrestrial plant ecology. Menlo Park, CA, USA: Benjamin/Cummings.
- Bazzaz FA, McConnaughay KDM. 1992. Plant–plant interactions in elevated CO₂ environments. *Australian Journal of Botany* 40: 547–563.
- Cotrufo MF, Ineson P, Scott A. 1998. Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Global Change Biology* 4: 43–54.
- Dippery JK, Tissue DT, Thomas RB, Strain BR. 1995. Effects of low and elevated CO_2 on C_3 and C_4 annuals. I. Growth and biomass allocation. *Oecologia* 101: 13–20.
- Ehleringer JR, Cerling TE, Helliker BR. 1997. C₄ photosynthesis, atmospheric CO₂, and climate. *Oecologia* 112: 285–299.
- Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB. 2002. Non-linear grassland responses to past and future atmospheric CO₂. Nature 417: 279–282.
- Grünzweig J, Körner C. 2001. Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO₂. *Oecologia* 128: 251–262.
- Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. *Nature* 388: 576–579.
- Inouye RS, Tilman D. 1988. Convergence and divergence of old-field plant communities along experimental nitrogen gradients. *Ecology* 69: 995–1004.
- Johnson HB, Polley HW, Mayeux HS. 1993. Increasing CO₂ and plant–plant interactions: effects on natural vegetation. *Vegetatio* 104/105: 157–170
- Johnson HB, Polley HW, Whitis RP. 2000. Elongated chambers for field studies across atmospheric CO₂ gradients. Functional Ecology 14: 388–396.
- **Körner C. 2000.** Biosphere responses to CO₂ enrichment. *Ecological Applications* **10**: 1590–1619.
- Leadley PW, Niklaus PA, Stocker R, Körner C. 1999. A field study of the effects of elevated CO₂ on plant biomass and community structure in a calcareous grassland. *Oecologia* 118: 39–49.
- Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB. 2002. Stomatal acclimation over a subambient to elevated CO_2 gradient in a $\mathrm{C}_3/\mathrm{C}_4$ grassland. *Plant, Cell & Environment* 25: 557–566.

- Mielnick PC, Dugas WA, Johnson HB, Polley HW, Sanabria J. 2001. Net grassland carbon flux over a subambient to superambient ${\rm CO_2}$ gradient. Global Change Biology 7: 747–754.
- Morgan JA, LeCain DR, Mosier AR, Milchunas DG. 2001. Elevated CO_2 enhances water relations and productivity and affects gas exchange in C_3 and C_4 grasses of the Colorado shortgrass steppe. *Global Change Biology* 7: 451-466.
- Niklaus PA, Leadley PW, Schmid B, Körner C. 2001. A long-term field study on biodiversity–elevated CO₂ interactions in grassland. *Ecological Monographs* 71: 341–356.
- Owensby CE, Coyne PI, Auen LM. 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. *Plant, Cell & Environment* 16: 843–850.
- Owensby CE, Ham JM, Knapp AK, Auen LM. 1999. Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO₂. Global Change Biology 5: 497–506.
- Petit JR, Jouzel J, Raynaud D *et al.* 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. *Nature* 399: 429–436.
- Phillips OL, Gentry AH. 1994. Increasing turnover through time in tropical forests. Science 263: 954–958.
- Polley HW, Johnson HB, Derner JD. 2002. Soil- and plant-water dynamics in a C_3/C_4 grassland exposed to a subambient to superambient CO_2 gradient. *Global Change Biology* 8: 1118–1129.
- Poorter H, Pérez-Soba M. 2001. The growth response of plants to elevated CO₂ under non-optimal environmental conditions. *Oecologia* 129: 1–20.

- Potvin C, Vasseur L. 1997. Long-term CO₂ enrichment of a pasture community: species richness, dominance, and succession. *Ecology* 78: 666–677.
- Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. 2001. Plant diversity enhances ecosystem responses to elevated CO, and nitrogen deposition. *Nature* 410: 809–812.
- Schappi B, Körner C. 1996. Growth responses of an alpine grassland to elevated CO₂. *Oecologia* 105: 43–52.
- Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB. 2002. Grassland responses to global environmental changes suppressed by elevated CO₂. Science 298: 1987–1990.
- Stöcklin J, Schweizer K, Körner C. 1998. Effects of elevated CO₂ and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. *Oecologia* 116: 50–56.
- Street-Perrott FA, Huang Y, Perrott RA, Eglinton G, Barker P, Khelifa LB, Harkness DD, Olago DO. 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. *Science* 278: 1422–1426.
- Teyssonneyre F, Picon-Cochard C, Falcimagne R, Soussana J-F. 2002. Effect of elevated CO₂ and cutting frequency on plant community structure in a temperate grassland. *Global Change Biology* 8: 1034–1046.
- Ward JK, Tissue DT, Thomas RB, Strain BR. 1999. Comparative responses of model C₃ and C₄ plants to drought in low and elevated CO₂. Global Change Biology 5: 857–867.
- Wilsey BJ, Polley HW. 2003. Effects of seed additions and grazing history on diversity and productivity of subhumid grasslands. *Ecology* 84: 920–931.