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ABSTRACT 

Baker, J.M. and Nieber, J.L., 1989. An analysis of the steady-state heat balance method for meas- 
uring sap flow in plants. Agric. For. Meteorol., 48: 93-109. 

An axisymmetric finite element model of heat flow was used to evaluate some of the assumptions 
inherent in the steady-state heat balance method for measuring sap flow in herbaceous plants. 
Results indicate that the gauge slightly overestimates conduction up and down the stem when sap 
flow is nearly zero, causing a corresponding underestimate of the sheath conductance and the 
radial outward heat flux. As sap flow rates increase, the temperature distribution in the stem and 
gauge is altered to the point that the one-dimensional Fourier equations are no longer applicable 
and the individual heat fluxes in the system are poorly estimated. However, the errors are largely 
self-compensating, so that the resulting gauge estimate of the heat absorbed by the sap stream is 
reasonably accurate. The model indicates that stem vascular anatomy affects the accuracy of the 
method, predicting that, in general, the method should be more accurate with dicots than with 
monocots. 

INTRODUCTION 

Accurate measurement of plant water use has always been a difficult task 
for those interested in soil/plant/atmosphere relationships. A recent approach 
which has shown promise is the steady-state heat balance method developed 
by Sakuratani (1981, 1984). Use of this method does not alter any of the en- 
vironmental or physiological factors affecting the transpiration process and 
Sakuratani reports an accuracy of _+ 10%, a figure supported by the results of 
Baker and Van Bavel (1987), who worked with cotton and sunflowers in the 
laboratory, and Steinberg et al. (1988), who used young peach trees in a field 
and greenhouse study. 

The method works in the following way. A steady, known amount of heat is 
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applied to a small segment of the stem from a thin flexible heater that  encircles 
the stem and is itself encircled by foam insulation. In the steady state, this heat 
input to the segment must  be balanced by heat fluxes out of the segment, of 
which there are four: conduction up the stem, conduction down the stem, con- 
duction outward through the foam sheath and convection in the moving tran- 
spiration stream. The conductive fluxes are estimated by applying Fourier's 
Law, in the first two cases using the one-dimensional form and in the third 
case applying the integrated equation for radial flow in a semi-infinite cylinder. 

The required thermal conductivities are known or can be measured; the re- 
quired temperature gradients are estimated from the output of strategically 
placed thermocouples. One thermocouple is placed against the stem, just above 
the heater, with one junction 2 mm further up the stem than the other. The 
temperature difference across this differentially wired thermocouple, divided 
by the distance between them, is taken as the gradient in the upward, apical 
direction. The downward, basal gradient is obtained in the same manner from 
a similarly wired pair of thermojunctions placed against the stem below the 
heater. The radial outward gradient is obtained from a thermopile consisting 
of several thermojunctions in series on either side of a thin sheath surrounding 
the heater. Baker and Van Bavel (1987) or Sakuratani (1984) provide further 
details on the construction. 

Subtraction of the conductive fluxes from the known heat input yields the 
heat transported by the moving sap. Dividing this residual heat by the product 
of the heat capacity of sap and the temperature difference between sap entering 
and leaving the heated segment directly yields the mass flow rate of the sap 
(eq. 1) 

F =  [ P - L A  (ATu/AX+ZITd/AX) - K A T e ] / ( C ~  (To - Ti) ) ( i )  

where F = s a p  flow rate (g s -1); P = p o w e r  to heater (W); L--s tem thermal 
conductivity (W m -1 °C-~); A = s t e m  cross-sectional area (m2); AT,, /  
Ax = temperature gradient up the stem ( ° C m -  1); A T J A x  = temperature gra- 
dient down the stem (°C m - l ) ;  K--sheath  conductance (W °C-1); 
ATr = temperature difference across thermopile ( ° C ); Cs = heat capacity of xy- 
lem sap (J g-1 oC-~); To=temperature  of sap leaving heated segment (°C); 
Ti = temperature of sap entering heated segment ( ° C ). 

The method is direct, requires no calibration and requires no knowledge of 
the cross-sectional area of the xylem vessels. However, implicit in the deriva- 
tion are a number of assumptions. Since these assumptions cannot be easily 
examined in a physical experiment, we used computer simulation to evaluate 
them, as has been done with other methods for measuring plant water use 
(Pickard and Puccia, 1972; Swanson and Whitfield, 1981 ). We examined the 
following questions. 

(i) Are heat fluxes in the system adequately estimated by the components 
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of eq. 1; i.e., are the temperature gradients measured on the surface of the stem 
representative of the gradients across the whole stem cross-section? 

(ii) The sheath conductance used to calculate the radial outward flow of 
heat is typically calculated by difference, subtracting the measured upward and 
downward conductive fluxes from the known heat input during a period, typ- 
ically near dawn, when sap flow is zero or nearly so (Sakuratani, 1984; Baker 
and Van Bavel, 1987). If some flow is occurring during this period, what is the 
effect on the calculated sheath conductance and what is the subsequent effect 
on measured sap flow rates? 

(iii) How is the method affected by stem anatomy differences between mon- 
ocotyledons, where vascular bundles are scattered throughout the stem cross- 
section and dicotyledons, where xylem elements are formed in an annular ring, 
with parenchyma tissue to the inside and epidermal tissue to the outside? 

(iv) Is the accuracy of the method a function of the sap flow rate? 
Questions relating to the design of the gauge, i.e., type and thickness of in- 

sulation used, placement of thermojunctions, etc., were not considered in this 
study. 

MATERIALS AND METHODS 

The gauge configuration upon which the model was based is described by 
Baker and Van Bavel (1987). The heater is a resin-coated Inconel foil of neg- 
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Fig. 1. Schematic of the stem-gauge system. Points A and B indicate the thermojunctions whose 
differential output is used to approximate the temperature gradient in the upward direction, while 
Points C and D indicate thermojunctions serving the same purpose for the downward direction. 
Points E and F represent two of the eight junctions forming a thermopile used to measure the 
radial outward temperature gradient. The change in sap temperature as it moves through the 
heated segment is obtained from the differential output across Junctions C and B. 
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ligible thickness a n d t h e  insulation is a latex foam of 0.01-m thickness. The 
thermal conductivity of the foam was measured, using a line-source heating 
probe (Decagon Devices, Inc., Pullman, WA) as described by Jackson and 
Taylor (1986), while the thermal conductivity of the stem was taken as the 
mean of measured values for a range of herbaceous species reported by Sak- 
uratani (1981). 

Figure 1 illustrates the geometry of the modeled system. A stem radius of 
0.01 m was used for both cases, with the insulation thickness also equal to 0.01 
m. The length of the foam insulation was 0.05 m, extending equally in the basal 
and apical directions from the heater, which was 0.01 m wide. The total length 
of stem included in the model was 0.20 m. The lower boundary was assumed 
to be at the soil surface, 0.02 m below the lower edge of the foam insulation. 
The upper boundary was thus 0.13 m above the upper edge of the insulation. 

MATHEMATICAL ANALYSIS 

Governing equations 

The heat transport  problem, illustrated in Fig. 2 (a), is three-dimensional, 
but due to the prevailing axisymmetric conditions, the problem can be reduced 
to one of axisymmetric heat conduction and convection. Also, for the present 
exercise sap flow and the temperature distribution in the stem are assumed to 
be at steady state. The governing partial differential equation for this problem 
is given by 

l[  Kr r (~ [rOT~ 7 02T OT _ 
r L Or\ ~rJj+Kzz~z2-FCs~z +Q=O (2) 

where Krr and Kzz are the thermal conductivities in the radial and axial direc- 
tions, respectively, T is the temperature, F is the rate of sap flow, Cs is the heat 
capacity of the sap and Q is a source/sink term. Sap flow is assumed to be in 
the axial direction only. The boundary conditions for the problem presented 
are listed below, in reference to Fig. 2 (a). 

T=Ta, z=O O<_r<_r~,O<_O<_27~ (3a) 

OT 
-O,z=zt 0_< r_<r~,0-< 0_< 2~ (3b) 

Oz 

OT --grr~r-~h (Ts - Ta) ,  

OT 
--Krr~r=h ( T f -  Ta), 

0-< z-< zm, zft-< z-< zt, r = r s , 0  <- 0-< 2~z (3c) 

z ~ -  z-< zft, r=rf ,  0-< 0__ 27~ (3d) 



(o) 

I ~" k (3) Tair 

~ ( " 

(2) 

97 

z t - -  

Fig. 2. (a) The domain of the heat flow problem. The applicable boundary conditions are described 
in the text. (b) The finite element grid imposed on the flow domain. (c) A single element of the 
grid. 

where Ts and T~ are temperatures  on the surface of the stem and foam, respec- 
tively, and Ta is the temperature  of the surrounding air. In eq. 3c and d, h is a 
heat transfer coefficient, defined as 

h=p CJr~ +eaT~ (J m -2 s -~ °C-1) 

where p and Ca are the density and heat capacity of air, respectively, and ra is 
the aerodynamic resistance, calculated as a function of the ambient  wind speed 
and the diameter of the stem in the manner  described by Campbell (1977). e 
is the emissivity and a is the Stefan Boltzmann constant  (5.67 × 10 -8 W m -2 
K-4) .  For the purposes of this analysis, wind speed was taken as 2 m s -1, 
yielding an aerodynamic resistance of 30 s m-1. The term eaT ~ is a radiative 
transfer coefficient, derived from the surface radiation balance, eaT ~ -EaT 4, 
by assuming equal emissivity for surface and surroundings, and writing T~ as 
T~+dT. Expanding ( T a + d T )  4 and dropping all terms cubic or greater in dT 
because of its small magnitude relative to Ta allows the radiation balance to be 
writ ten as eaT ~ (T~- Ta), which greatly simplifies solution (Campbell, 1977). 
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Numerical solution 

The finite element method was used to solve eq. 2, subject to the conditions 
given in eq. 3. The Galerkin formulation of the method of weighted residuals 
(Segerlind, 1984) was the specific procedure used to derive the finite element 
equations. This procedure yields the following set of linear algebraic equations 
for any given element such as the one shown in Fig. 2c 

3 

(e) i=  1,2,3 (4) a[ ~) = ~ --ijR(e) T ( e ) - I - q [  e) + Q ! e )  .~_f si 
j=l 

where 
(e) = refers to element e 
G[ ~) = residual equation for node i for element (e) 
T)  e) = temperature at node j 

z~f FCs ~fc~ B!;)-2A (Krrb b +K  c c )-I ek!; 

A (e) = a r e a  of element (e) 
Q~(e) = amount  of the heat  source located in the element which contributes to 
node i 
f =  (rl + 2 + r3)/3 = radial distance from the axis of the cylinder to the centroid 
of the element 
rl,r2,r3 = radial distances from the axis of the cylinder to nodes i, j and k, re- 
spectively, of the element 
b i - ~ z i - z i +  1 
c i = r i + l - r  i 

(e) ~ h L i i + l  ~ h L i i _ l  
f si --  ' (2riJt-ri+l)Jr ~ "  (2 r i+r i_ l )  

3 3 

q !e ) = ( Vi,i + 1 Li,i + l _{_ Vi , i -1  L i , i - 1 )  / 2  

Vi,~+ 1, Vi,~_ 1 = rate of heat  conduction across the two element sides connected 
to node i 

7~ 
k!f ) ---~ [hL~,i+l (3ri +r~+l) -t-hLi,i_l (3r~ +ri_l)  ] for i=j  

k (e) 7~ 
ij =-6 hL i , i+ l  ( r i + r j )  i # j  

7C 
k!~)=-6 hLi,i_l (ri+rh) i # k  

Li,i+ 1 ,  Li,i_ 1 = length of the two element sides connected to node i. 
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In the above, i takes on the values 1, 2, 3 cyclically. 
To obtain the global system of equations, the equations for individual ele- 

ments are combined by matrix addition to yield: 

M 

V~=~ V!e)= ~Sij T~+qi+Q~+f~i=O i=l,2,.. . ,M (5) 
(e) j = l  

where M is the number of node points used to discretize the solution region. 
Here, qi refers to the heat conduction across that portion of the solution region 
boundary connected to node i. For all nodes i on the interior of the solution 
region, the value of q~ is zero. 

The boundary condition given by eq. 3a is implemented into eq. 5 by modi- 
fying the global stiffness matrix. The condition given by eq. 3b means that the 
boundary has no heat conduction. This condition is implemented by setting q~ 
to zero for nodes connected to element sides where eq. 3b applies. The condi- 
tions given by eq. 3c and d are already implemented into eqs. 4 and 5 through 
the ko (e) and fs~ (~) terms. The implementation of these two conditions is out- 
lined in the Appendix. 

The finite element grid used in the analysis is illustrated in Fig. 2 (b). The 
sap flow rate given by the term q in eq. 2 was assumed to be uniform in the z 
direction. Two distinct cases were simulated, one representing a monocot, for 
which the sap flow was assumed to be uniformly distributed in the radial di- 
mension, and the other representing a typical dicot, for which sap flow was 
confined to an annular ring extending from 40 to 70% of the radius of the stem. 
This is a simplification of reality, but it is a recognition of a fundamental an- 
atomical difference between monocots and dicots (Foster and Gifford, 1974). 

The sap flow rate parameter was implemented into the finite element equa- 
tions by assigning a non-zero value of F to elements where sap flow was as- 
sumed to occur. Heat fluxes of interest were calculated following solution of 
the temperature field, using finite difference forms of the appropriate differ- 
ential equations (Carslaw and Jaeger, 1959). To compute the gauge estimate 
of sap flow under a given condition, the temperatures at points corresponding 
to the locations of the thermocouples were inserted in eq. 1. A range of sap flow 
rates from 0 to 100 g h-1 was used. To put the flow rates in perspective, in a 
field with a stand density of 50 000 plants ha -  1, a flow rate of 100 g per h per 
plant equals a field transpiration rate of 0.5 mm h-1, which is often equaled or 
exceeded on sunny summer days. 

RESULTS AND DISCUSSION 

Determination of sheath conductance 

As stated earlier, sheath conductance is determined during a period of zero 
or near zero sap flow by measuring the conductive fluxes up and down the stem, 



100 
20 

lg  
o 

E 18 

"E 
17 

-- m o n o c o t  

• • . d i c o t  

1 6  

15 
1 2 3 

Sap Flow Rate, g / h r  

Fig. 3. Apparent sheath conductance. This conductance is calculated by difference during a period 
when sap flow is considered to be zero. The figure illustrates the effect on the calculated conduc- 
tance if sap flow during the period was non-zero. 
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Fig. 4. The effect of using an incorrect sheath conductance. The figure shows sap flow estimated 
using a sheath conductance obtained during a period when sap flow was assumed to be zero, but 
was actually 5 g h-  1. It is plotted against sap flow estimated using a conductance obtained when 
sap flow was truly zero. 

subtract ing  these  f rom the  h e a t  input  and  div iding t h e  resul t  by the  t empera-  
ture  d i f ference  across  a t h e r m o p i l e  s u r r o u n d i n g  t h e  h e a t e d  s e g m e n t  o f  s t em.  
T h i s  was  done  wi th  the  mode l ,  w i t h  sap f low set  to  zero,  a n d  the  s h e a t h  con-  
duc tance  o b t a i n e d  w a s  t h e n  used  in later s i m u l a t i o n s  to  obta in  the  apparent  
(gauge)  sap f low rate at var ious  true  ( m o d e l  input )  sap f low rates  under  var-  
ious  cond i t ions .  In a separate  exercise ,  the  s h e a t h  c o n d u c t a n c e  w a s  ca lcu la ted  
for a range o f  input  sap f low rates  t h a t  were  low, but  n o n - z e r o .  

Figure 3 s h o w s  t h e  e s t i m a t e d  s h e a t h  c o n d u c t a n c e  as a f u n c t i o n  o f  sap f low 
rate for b o t h  the  m o n o c o t  a n d  dicot .  T h e  resul t s  for the  t w o  are n o t  great ly  
dif ferent .  As  expected ,  b o t h  converge  to  the  "true" s h e a t h  c o n d u c t a n c e  as sap 
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flow approaches zero and they both increase in exponential fashion as sap flow 
increases. 

In practice, the sheath conductance has been determined in the field on in- 
tact plants in the pre-dawn hours (Sakuratani, 1984). However, even though 
transpiration may be negligible, there may still be sap flow associated with 
growth and/or rehydration. What is the consequence of using a value obtained 
under the assumption of zero flow if indeed flow was occurring? Figure 4 is a 
plot of gauge-estimated sap flow using an incorrect sheath conductance (ob- 
tained when flow was actually 5 g h -  1 rather than zero ) versus gauge-estimated 
sap flow using the true sheath conductance. Obviously, the error is greatest at 
low flow rates, but it diminishes in relative magnitude rapidly as sap flow in- 
creases, to the point of insignificance at flow rates > 50 g h -  1. 

Estimation of the heat fluxes 

To evaluate the assumptions about heat flow implicit in the heat balance 
method, the true conductive fluxes in the apical, basal and radial directions 
were computed element by element in the model and compared to the respec- 
tive gauge estimates. The results, plotted against sap flow rate, are shown in 
Fig. 5 for the monocot model and Fig. 6 for the dicot. Considering first the 
situation in the absence of flow, the results indicate that the gauge overesti- 
mates both the apical and basal conductive fluxes by ~ 10%. As a consequence, 
the radial heat flux is underestimated. As sap flow increases, the gauge contin- 
ues to overestimate the apical heat flux and underestimate the radial heat flux. 
The basal heat flux, while overestimated at flow rates < 10 g h -  1, is underes- 
timated as sap flow increases beyond that point. 

Isotherms for the respective systems help explain the results. Figure 7 shows 
the no-flow case. The inner rectangle delineates the volume for which the heat 
balance applies. The temperature gradients across the top and bottom bound- 
aries of the control volume are steepest at the periphery of the stem, nearest 
the heater. Since the thermojunctions are located here, the gauge apparently 
overestimates the heat fluxes across these boundaries, in turn causing the un- 
derestimate of the radial heat flux. 

Figure 8 shows the isotherms at a sap flow rate of 100 g h-1 for both the 
monocot and dicot. The temperature field is severely deformed at this flow 
rate, causing errors in estimates of heat fluxes based on assumptions of one- 
dimensional conduction which clearly do not apply. In the case of the monocot, 
the total conductive heat flux across the upper boundary is actually negative; 
i.e., the conductive heat flux is into the control volume rather than out of it, 
due to heat convected in the xylem sap near the surface of the stem that is then 
conducted inward and down the center of the stem. 
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Fig. 5. Conductive fluxes in the stem-gauge system for the monocot. 

Fig. 6. Conductive fluxes in the stem-gauge system for the dicot. 

Overall accuracy 

While estimates of the individual heat fluxes are of  interest, the primary 
interest is in the overall accuracy in the estimation of the sap flow rate. To 
evaluate this, a range of  sap flow rates was input to the model and the computed 
steady-state temperature differences were used in eq. 1, together with the pre- 
viously determined (at zero flow) sheath conductance to obtain the gauge- 
estimated sap flow rate. Figure 9 shows the results for both the monocot  and 
dicot. It indicates a noticeable difference between the two. For the dicot, the 
gauge result is very close to the 1:1 line. For the monocot,  the gauge system- 
atically underpredicts the sap flow rate, with the accuracy deteriorating as sap 
flow rate increases, so that at a true sap flow rate of 100 g h-1,  the gauge is in 
error b y >  20%. 

In interpreting these results, the first step is to see how well the gauge pre- 
dicts the residual heat, i.e., the heat absorbed by the transpiration stream. As 
Fig. 10 shows, for both simulations the gauge is reasonably close, meaning that 
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Fig. 7. Isotherms in the stem-gauge system in the absence of sap flow. The plot shows only the 
region including the gauge, with the smaller, inner rectangle delineating the region for which the 
measurement technique estimates the heat balance. 

the underest imates of the basal and radial heat fluxes nearly balance the ov- 
erestimate of the apical flux. From Fig. 10, it would appear that  there is little 
difference in gauge performance between the monocot  and the dicot, but  this 
sap heat flux must  be divided by the temperature  difference between the sap 
entering and leaving the control volume in order to obtain the sap flow rate 
(eq. 1 ). The gauge est imates this from the difference in temperature between 
Points  B and C (Fig. 1). The results indicate that  this estimate is more accu- 
rate for the dicot than for the monocot  and examination of the isotherms in 
Fig. 8 provides visual confirmation. It is important  to note that  this tempera- 
ture difference ( T o - T i  from eq. 1) decreases in magnitude as sap flow in- 
creases, so that  thermocouple errors or bias due to conduction along the wires 
could affect the accuracy in a manner  that  this simulation would not address, 
since it was assumed that  the gauge thermojunctions exactly measure the tem- 
perature at their locations. 

A final point  concerns the choice of the power input to the heater. The heat 
input used in the model was 0.12 W, uniformly distributed across the 0.01-m 
wide heater encircling the stem, but  simulations with higher or lower levels of 
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rectangle delineates the region for which the heat balance is estimated. (a) monocot; (b) dicot. 
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Fig. 10. Heat transported by convection out of the control volume. The gauge estimate is computed 
by difference, subtracting the estimated conductive fluxes from the known heat input. The "ac- 
tual" is computed within the finite element model by multiplying the sap flux in each element on 
the boundary of the control volume by its temperature and the heat capacity of the sap. 

heat input yield the same results since none of the transport coefficients are 
constrained by temperature dependence. In practical use of the method, the 
heat input level is determined by other considerations, i.e., it must be high 
enough to generate temperature differences resolvable by the data logger, but 
low enough to avoid physiological damage. 

CONCLUSIONS 

Numerical solution of the governing equations has shown that stem anat- 
omy affects the accuracy of the heat balance method for estimating sap flow 
rate. The method is predicted to be more accurate for dicotyledonous plants 
than for monocotyledonous plants, at least to the extent that their vascular 
structure conforms to the simplified assumptions made in this exercise. As- 
sessment of the expected accuracy with a given species will require analysis 
with a model geometry tailored to match as closely as possible the stem anat- 
omy of the species in question. A further crop-specific factor not considered 
was the effect of heterogeneity in thermal properties, which could be important 
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in species like soybean, which tend to develop voids in the center pith of the 
stem as they mature. 

With respect to the sheath conductance, the model indicates both good news 
and bad. Because the gauge apparently overestimates apical and basal conduc- 
tion in the zero sap flow condition, the sheath conductance will be underesti- 
mated to some extent. However, errors in the calculation of the sheath con- 
ductance, at least those associated with the presence of low flow rates during 
the supposed no-flow condition appear not to have serious consequences. 

One cannot escape the conclusion that the overall success of the gauge in 
measuring transpiration is somewhat serendipitous, since the underlying as- 
sumptions about heat flow in the system lose much of their validity as sap flow 
increases. However, the errors in estimation of conduction tend to cancel one 
another, and the accuracy reported by users and confirmed by the simulation, 
at least for the case of the dicotyledon, is certainly sufficient to encourage 
further use of the method, especially since it is non-invasive and easy to use 
relative to alternative methods for measuring plant water use. 

APPENDIX 

The governing differential equations of steady state conductive and convec- 
tive heat transfer in the stem of a plant is given by 

L(T) 1 r Krr-~r r +Kzz Oz 2 

where Krr and Kzz are the thermal conductivities in the radial and axial coor- 
dinate directions, T is the temperature, F is the sap flow rate, C~ is the specific 
heat capacity of the sap and Q is a source/sink term. 

The finite element solution of eq. A1 begins by assuming an approximate 
solution given by 

T(r,z) ~- T(r,z)= [N]{T} ( t2 )  

where [N] is a set of linearly independent interpolation (shape) functions and 
{T} is the vector of unknown temperatures at node points. The interpolation 
function defined by eq. A2 is usually defined over discrete elements, rather 
than over the entire solution region. Since eq. A2 is an approximate solution, 
substitution of this approximation into eq. A1 yields 

L(q')=R(r,z)  ¢O 

where R (r,z) is a residual error. 
The method of weighted residuals (MWR) is used to eliminate this residual 

error in an average sense over the solution domain. In particular, the Galerkin 
procedure of the MWR is applied in the current analysis. This procedure is 
represented as 
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Gi=J NiL(7')d~=O i=1,2 ..... M 

where Ni is the shape function for node i and M is the number of node points 
used to diseretize the domain. 

This integral s tatement indicates an integration over the entire solution do- 
main, whereas it is usually advantageous to perform the integration on an ele- 
ment  basis and then combine the results of individual elements to yield the 
result for the global domain. The integral s tatement for a discrete element is 
given by 

G[ e) = fe(e) N~ L(T)  d ~  (e) i=  1,2...,p 

where Ni is the shape function for mode i in element (e) a n d p  is the number 
of node points in an element. 

The second order derivatives in the integral statement must be reduced to 
first order because the second derivative of T will be undefined at element 
boundaries. The first derivatives are discontinuous at the element boundaries, 
but they constitute a finite discontinuity and the integral above is, therefore, 
defined. The reduction of the second order derivatives is accomplished using 
two-dimensional integration by parts to yield the following expression 

G[ ~) = fr(e)Ni( Krr c)~r cOs O+ Kzz ~ s i n  O)dT'(~) - f~t~) ( KrrO~i c)Tor 

-~-I~zzONiOT~d~'e)-Jf-f~2(e,NiQd~(e)-f~2,e)Ni~Cs~d~(e' (A3) Oz Oz ] 

Substitution of the expression for T into eq. A3 yields 

p , ( e )  Krr~rCOSO+Kzz~zSinO dF ) i - i  = lelNi - Krr 

-bKzzOgi O[N])d'Q{e) {T}+ fr2,,,)giQd~Q(e)- f~(e)giYCs~z ] d~2(e) Oz 

(A4) 

For a linear triangular element, there are three node points and the terms in 
eq. A4 can be written as 

= Ni Krr--COsO+Kzz--slnO dl -'( - D~)+Q!e) i  1,2,3 (A5) G[~) ,e, Or Oz J --1j = 

where 
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i ONj  t_gz  z i 
Di j (e)= (e) Krr Or Oz 

ONi (e) 7rf __  -. (e) -[-NiFCs~z-z)d~ =[-2-n(Krrbibj-~-Kz.cicj)-[-~'(]s~crciJ 
Q!e) = [ NiQd~ (~)=source strength at n o d e  i 

Jr2 (e) 

bi = zi-zi+ 1, where i takes on the values 1, 2, 3 cyclically 
¢i = ri+x-ri, where i takes on the values 1, 2, 3 cyclically. 
Derivative boundary conditions for this problem are those of zero heat con- 
duction given by 

Krr~ COS O+ Kzz~ Sin O=O (A6) 

and convection given by 

--(Krr~ cos 0-1-K~ sin O)=h(Ts- Ta) (A7) 

where Ts is the temperature at the element surface, Ta is the temperature of 
the surrounding air and h is the convection coefficient. Both of these condi- 
tions are implemented directly into eq. A5 through the first integral. 

The substitution of eq. A6 produces a null result, but the substitution of eq. 
A7 produces non-zero terms. In the finite element formulation, the term 
h ( Ts - Ta) is replaced by the approximation h ( [N] {T } - Ta). Substitution of 
eq. A7with this approximation into eq. A5 yields for the first integral 

(3ri+rj) (ri+r i) 0 Ti ] 
--fc [Nlh([N]{T}-Ta)(~)dT'(e)=Trh: i'j (ri+ri) (ri-t-3rj) 0 Tj 

(~ 0 0 0 Tk 
7oh Lid { 2ri + rj 1 

- t - - - 7 -  r i ; r j  f =[k] (e) {T}(~)+{/s} (e) 

for side i,j of the element. A similar element matrix form results for the j,k and 
k,i sides of the element. Note that  the vector of unknown temperatures results 
from this substitution of the convection boundary condition. The coefficients 
in the [k] matrix are combined with the coefficient of the [D] matrix by ma- 
trix addition to yield for eq. A5, 

3 

a}e) ._=q[e)__ ~ jq(e) i=1,2,3 --ij TJ  e) +Qi (e)+f~i (~) 
j=l 
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where 

B!e) - D ! e )  + k ! f  ) 
U - - ~ U  

q~e) : ( Vi,i+ l Li,i+ l-b V/,i_I Li,i_l ) /2 

Vi,i+i, Vi, i_  1 = rate of heat  conduction across the two sides of element (e) con- 
nected to node i, and Li,i+ ~, Li , i_  1 = length of the two sides of element (e) con- 
nected to node i 

f~)  -TchLi'i+l (2ri + r i + l )  q 7~hLi,i_l (2ri + r i _ l )  
3 3 

In the above, i takes on the values 1, 2, 3 cyclically. 
The global system of equations can be derived by adding the contributions 

from discrete elements into the global system of equations, i.e. 

M 
V ~ ( e ) ) T j  ~ (e) __Vi:(~) Gi ~,,Gi (e) ~ (Z..,~ij = = - L q i  - ~ , Q } e )  ~ . s i  

(e) j = l  (e) (e) (e) (e) 

M 

~- E B i j T j - q i - Q i - f s i = O  I = l , 2 , . . . , M  ( A 8 )  
j = l  

Note that  q~ terms will be zero for all nodes on the interior and for insulated 
boundaries, and fs~ terms will be zero for all nodes not on a boundary with 
convection. 
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