Progress report on

Bison x Simmental F1 cross genome assembly

 Mike Heaton, Ph.D.

ASA Fall Focus Meeting
Sunday, 8:30, August 25, 2019
Manhattan, Kansas

USDA

Topics

- The problem of assembling a bovine genome

- Interspecies crosses for breed-specific genome assemblies

- Current status of the Simmental genome assembly

Why are breed-specific genome assemblies important?

- Required for understanding the functional genetic difference between breeds

Hereford Line 1 Dominette 01449

- We cannot identify all that is unique about a breed by aligning it to a Hereford genome

In human genome research, efforts are underway to sequence ethnic groups

Home About Articles Submission Guidelines

Research Highlight | Open Access | Published: 24 May 2019
One reference genome is not enough
Xiaofei Yang, Wan-Ping Lee, Kai Ye \& Charles Lee

Utah/Mormon
Chinese
Korean
African
Puerto Rican

Reference-quality cattle genomes are available today

Hereford
Jersey Holstein
Nelore
Angus
Brahman

However, not all reference genomes are created equally

How to assemble a mammalian genome in two steps

- Step 1: chop into short bits
- Step 2: align bits

The key to success: use long reads!

 uncuicusivicinchiviso

The issue of quality

- Human genome, 2001
- \$3 billion, 10 years
- "Short read" draft (90\% complete)

International Human Genome Sequencing Consortium, Nature, 409:860-921 (2001)

Hereford reference assembly

- Bovine genome, 2009
- \$54 million, 7 years
- "Short read" draft (UMD3.1)
- 75,617 contigs

The Bovine Genome Sequencing and Analysis Consortium, Science 2009 324:522-528

L1 Dominette 01449

- Bovine genome, 2018
- \$200,000, 3 years

Dr. Ben Rosen, ARS, Beltsville Dr. Derek Bickhart, ARS, Madison
Dr. Bob Schnabel, U. Missouri
Dr. Sergey Koren, NHGRI
Dr. Juan Medrano, U.C. Davis

- 2,597 contigs

Dr. Tim Smith
USDA Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE

USMARC

The most recent Hereford genome is better than that from humans

Bovine Hereford ARS-UCDv1.2

Most reference-quality genomes today are from line-bred animals

Dr. Tim Smith asked: "Why not use highly outbred animals?"
The trio-based method step 1 : create F_{1}
Koren S, et al. Nat Biotechnol. 2018 Oct 22. 10.1038/nbt. 4277
Low et al., 2019, submitted for review.
Angus X Brahma
n
F_{1} Angus \times Brahman fetus (153 days)

Trio-binning

Assemble
separately

Brahman assembly

Angus assembly

$||||||||||||||\mid$ I|IIIIIIII...|

Comparison of assembly quality

Bovine UOA_Angus_1
Full contiguous chromosome

H:ifl:thintit

Interspecies crosses further improve genome assembly

Yak cow

F_{1} "Yaklander"

[^0]
Comparison of assembly quality

Bovine UOA_Angus_1
Hill|l|l|tind
Ifitilthisili!

BiSimm Project

How it got done

Recipient (left) with donor female C235E

Four veterinarians and a vet tech

May 23, 2019

Tissue dissection documentation

Multitasking

Processing tissue for liquid nitrogen

Attending to recipient, fetal dissection

All samples in liquid nitrogen within 37 minutes

Collection team

:":SimGenetics
 PROFIT THROUGH SCIENCE American Simmental Association

Stroud Veterinary Embry Services
Nebiostª Lincoln

USDA
Agricultural Research Service
USMARC

Left to right: Dr. Brad Stroud, Fred Schuetze, Dr. Halden Clark, Dr. Brian Vander Ley, Helen Smith, Dr. Adam Bassett, Brianna Harms, Michael Sadd, Jaden Carlson, and Madeline Pelster; inset: Mike Heaton.

What did we do in the lab?

When will the genomes be public?

As early as Spring 2020... if all goes well
Principle team handling genome assembly, analyses and manuscript development

USDA Agricultural Research Service u.s. DEPARTMENT OF AGRICULTURE

Dr. Tim Smith, USMARC

Dr. Ben Rosen, ARS, Beltsville

Dr. Derek Bickhart, ARS, Madison

Dr. Beth Shapiro

Paleogenomics

Dr. Ed Green

When finished, we will be able to align Simmental DNA sequence to a Simmental genome

- To see what we've been missing...

Conclusions

- Assembly of a Simmental reference genome is under way.
- The quality of the new Simmental genome is expected to equal or surpass that of existing genomes

- The best genomes produced the best results

[^0]: Rice et al., 2019, submitted for review.

