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Abstract

Grazing land models can assess the provisioning and trade-offs among ecosystem
services attributable to grazing management strategies. We reviewed 12 grazing land
models used for evaluating forage and animal (meat and milk) production, soil
C sequestration, greenhouse gas emission, and nitrogen leaching, under both current
and projected climate conditions. Given the spatial and temporal variability that char-
acterizes most rangelands and pastures in which animal, plant, and soil interact, none of
the models currently have the capability to simulate a full suite of ecosystem services
provided by grazing lands at different spatial scales and across multiple locations.
A large number of model applications have focused on topics such as environmental
impacts of grazing land management and sustainability of ecosystems. Additional
model components are needed to address the spatial and temporal dynamics of animal
foraging behavior and interactions with biophysical and ecological processes on
grazing lands and their impacts on animal performance. In addition to identified knowl-
edge gaps in simulating biophysical processes in grazing land ecosystems, our review
suggests further improvements that could increase adoption of these models as
decision support tools. Grazing land models need to increase user-friendliness by
utilizing available big data to minimize model parameterization so that multiple models
can be used to reduce simulation uncertainty. Efforts need to reduce inconsistencies
among grazing land models in simulated ecosystem services and grazing management
effects by carefully examining the underlying biophysical and ecological processes and
their interactions in eachmodel. Learning experiences amongmodelers, experimentalists,
and stakeholders need to be strengthened by co-developing modeling objectives,
approaches, and interpretation of simulation results.

1. Introduction

Grazing lands, including range and pasture lands, are essential for animal

production (meat, milk, and fiber) systems worldwide (Derner et al., 2017a),

and sustain the world population of nearly 8 billion through the provision of

high-quality dietary protein (Snow et al., 2014). They are also critical for a

variety of regulating, cultural, and supporting ecosystem services desired by

society (Havstad et al., 2007; Yahdjian et al., 2015). Grazing lands provide

key habitats for wildlife and biodiversity (Fuhlendorf and Engle, 2001;

West, 1993), as well as opportunities formaintaining and enhancing soil health

(Derner et al., 2018). Growing demand for livestock products is producing an

imperative for sustainable intensification of livestock agriculture that attempts

to reconcile increased production with long-term environmental stewardship

(Spiegal et al., 2018).
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The multiple purposes of grazing lands mean that land managers are faced

with difficult decision-making processes associated with complex production

and conservation problems (Boyd and Svejcar, 2009) in intertwined social-

ecological systems (Lubell et al., 2013; Wilmer et al., 2018). These complex

problems vary in time and space, which require process-based understanding

of the problem(s), adaptive management and coordination of management

and research (Boyd and Svejcar, 2009). Changing climates will affect forage

supply and its quality for livestock (Augustine et al., 2018; Ghahramani and

Moore, 2016) and require greater adaptive capacity, with enhanced decision-

making skills, which integrates biophysical, social, and economic considerations

(Derner et al., 2017b).

Grazing land managers need decision-making tools to cope with seasonal,

annual, and inter-annual variability of weather, variable production, and com-

modity market price fluctuations (Derner et al., 2012; Kipling et al., 2016a,b;

Kragt and Robertson, 2014; Moore, 2014; von Lampe et al., 2014). Grazing

land models can assist managers with decision-making through evaluation of

alternative management strategies under current as well as projected condi-

tions, including from predicted climate change (Bunting et al., 2016;

Fullman et al., 2017; Kalaugher et al., 2017; Moore and Ghahramani,

2014; Snow et al., 2014).Modeled output ofmultiple ecosystem services from

alternative management scenarios can provide valuable insight into tradeoffs,

but challenges remain for decision-making at spatial and temporal scales

relevant to land managers (de Groot et al., 2010; Derner et al., 2012;

Nelson et al., 2009). Increasing utility of models in grazing lands for

decision-making and adaptive management is possible when goals associated

with decision-making are matched with the complexity of the model (Derner

et al., 2012).

Previous reviews of grazing land models have identified gaps related to

modeling feed intake and rumen function of grazing animals, plant diversity,

grazing animal-forage interactions, and animal growth (Brilli et al., 2017;

Bryant and Snow, 2008; Cavalli et al., 2019; Del Prado et al., 2013;

Kipling et al., 2016a, 2016b; Snow et al., 2014). However, these reviews

have not addressed applications of grazing land models for multiple ecosystem

services, assessing trade-offs among these services and long-term sustainability

considerations. Our objective was to review grazing land models (Table 1),

based on a literature search of 12 commonly-used models, for simulating

the impacts of grazing management on the ecosystem services of forage

production, animal production, plant diversity, soil carbon (C) sequestration,
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and nitrogen (N) losses (Fig. 1) in both extensively managed rangelands and

intensively managed grasslands. We first review the grazing land models for

applications to increase understanding of the ecosystem for: (1) plant-animal

interactions, (2) animal-animal interactions, (3) forage production, (4) animal

production, and (5) natural resources and production tradeoffs. Second, we

review the models for application to short- and long-term decision-making.

Third, we conclude with a next frontier for grazing land models to improve

their utility for land managers.

2. Model applications for systems understanding

Among the 12 mechanistic models in Table 1 and 2, DayCent and

ALMANAC have no animal component, and APEX’s cow-calf production

is yet to be tested. APSIM is combined with GRAZPLAN for animal sim-

ulation. For vegetative production, APSIM, DairyNZWFM,DayCent, and

PaSim simulate the vegetation cover (or sward) as a single-plant community

(although a percentage of legumes can be set to simulate symbiotic nitrogen

fixation). Most models have daily time step and run at field scale. However,

SAVANNA uses a weekly time step, and APEX and SAVANNA have GIS

(Geographic Information System) capability to be used at watershed or

regional scales. The 12 models differ in complexity of simulated biophysical

processes, but also share some components. For example, the soil C and

N module of the CENTURY model is used in DayCent, PaSim, IFSM,

SAVANNA, and APEX. APEX and ALMANNAC are branches of the EPIC

(Environmental Policy Integrated Climate) model. Components of the SPUR

model (Simulation of Production andUtilization ofRangelands), an early grazing

Fig. 1 Ecosystem impacts commonly simulated in grazing land models.
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land model (Hanson et al., 1988), have been used in GPFARM, IFSM, and

GRAZPLAN. As such, this review is limited to applications of grazing land

models at field scales, with emphasis on individual model’ ability to understand

systems behavior and responses to management and weather/climatic variability.

2.1 Plant-animal interactions
Plant-animal interactions are complex and impact soils, nutrient cycling, plant

community structure and composition, and resulting vegetation heterogeneity

(Coughenour, 1991; Derner et al., 2009; Milchunas and Lauenroth, 1993;

Sándor et al., 2018a). Therefore, it is a challenge for grazing land models to

be highly process-based to account for the complexity of interactions, but still

be applicable to land managers for decision-making relevance regarding spatial

variability (Clark et al., 2000; Eckard et al., 2014;Hutchings et al., 2007; Tietjen

and Jeltsch, 2007).

Plant-animal interactions influence the dynamics of grazing lands at a

range of different spatial scales. At small (patch) scales, animal grazing

increases the heterogeneity of grazing lands due to selective grazing and

waste deposition (Sándor et al., 2018a; Zilverberg et al., 2018). These are

particularly challenging dynamics to simulate (Eckard et al., 2014), not least

because of the need to model land areas with different grazing or excretion

histories separately (e.g., Snow et al., 2017).

At the field scale, animal trampling effects can cascade to vegetation, soil

compaction, soil hydrology, and soil aeration, especially under high stocking

rates (Adiku et al., 2010). However, under light and moderate grazing,

effects on soil physical properties were limited to shallow (<10cm) depths,

short-lived and minimal (<10% of reduction in vegetation) based on liter-

ature, experiments, and APSIM simulation (Bell et al., 2011). Under high

grazing levels or wet conditions, compaction effects on root growth and

infiltration can affect long-term productivity of rangelands (Bell et al.,

2011). Under wet conditions, animal trampling can also break soil aggregates

and reduce soil aeration and infiltration, and such effects may last for weeks

to years (Beukes et al., 2013; Drewry, 2006). In DairyNZWFM, Laurenson

et al. (2016) assumed a percentage loss in pasture regrowth potential follow-

ing grazing for 90 days when soil water content was greater than a critical soil

water content above which the soil would be compacted. Beukes et al.

(2013) and Laurenson et al. (2016), using the DairyNZ WFM, found that

no grazing under wet soil conditions was less profitable compared with

6–10h grazing per day because of increased plant senescence and the costs

of feeding.
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At the farm scale, grazing land models are being used to understand the

role of diverse feeds and forages in managing for livestock productivity.

A significant example is the use of modeling to understand the value of crop

forage in integrated crop-livestock systems (Bell and Moore, 2012). Using

APSIM and GRAZPLAN, Moore (2009) compared winter wheat with

spring wheat, for dual-purpose cereals at several locations in Australia.

The benefit of adopting dual-purpose winter wheat depended on location

and rainfall. Light grazing of wheat crops in a cool-temperate environment

increased wheat yield, especially in dry years, due to a delay in phenology

and conservation of soil water for transpiration during the grain filling stage.

However, grazing at a high intensity reduced yield in wet years (Harrison

et al., 2012a,b). In addition to grazing crops, grazing crop stubble may be

beneficial, but it would not fully replace supplemental feed, based on a

GRAZPLAN simulation study in Australia (Thomas et al., 2010).

At the landscape scale, modeling analyses can provide insight into the resil-

ience of human-managed ecosystems under grazing and other management

strategies regarding the capacity of these grazing lands to absorb disturbance

and perturbation (Kalaugher et al., 2013). For example, Ludwig et al.

(2001) used the SAVANNA model to compare grassland and woodland

savanna resilience to grazing in Australia. They found the grassland was more

resilient to grazing than the woodland savanna. In another study in northern

Australia also using SAVANNA, Liedloff et al. (2001) simulated the trade-off

between fire and grazing and found that both simulation and experimental

observation showed intensive fire controlled woody species, especially shrubs.

However, fire also damaged both perennial and annual grasses. High grazing

intensity reduced perennial grasses in both the woodland savanna and grassland

in long-term simulations. Moderate grazing on the woodland savanna pro-

duced higher annual grass biomass than either heavy or no grazing treatments.

2.2 Animal-animal interactions
In all 12 models (Tables 1 and 2), animal-animal interactions are limited to

competition for forage and the provision of milk by mothers to their off-

spring. DairyNZ WFM, FASSET, and GRAZPLAN track the growth of

individual animals, but not their grazing patterns in rangelands or pasture-

lands (Table 2). A promising, but computationally expensive approach to

representing the behavior of grazing animals and their social interactions,

is the use of agent-based techniques, in which each animal is simulated as

a mobile agent (Fust and Schlecht, 2018; Jablonski et al., 2018).
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SAVANNA is one of the few models used to study interactions among

different types of animals, and in which animals are distributed and aggre-

gated based on diet selectivity and grazing patterns mediated through

competition for forage (Weisberg et al., 2002). For example, simulations

with the SAVANNAmodel suggest an optimal population of 3.7–4.7elkkm�2

in North Park, Colorado, by considering interaction among elk, cattle, and

deer (Weisberg et al., 2002). At high elk density, there was more intra-

competition among elk than inter-competition between elk and cattle,

which caused elk intake rate to decrease during winter. Plumb et al.

(2009) also used the SAVANNAmodel and estimated an ecological carrying

capacity of 2500–4500 bison in YellowstoneNational Park, which would be

reduced when there was pressure from the elk population. SAVANNA was

also used to model animal grazing patterns using artificial water provisioning

(Fullman et al., 2017; Hilbers et al., 2015; Plumb et al., 2009), fencing

(Boone and Hobbs, 2004), and land cultivation (Boone et al., 2002, 2006).

Predicted Climate change would intensify competition between animal

populations, especially under more extreme climate change scenarios (e.g.,

A1B and A2), due to shortage of herbaceous vegetation and abundance of

woody species (Bunting et al., 2016; Fullman et al., 2017).

2.3 Forage production
The ability to simulate forage production and its seasonal dynamics is a

requirement for all grazing land models. In semi-arid rangelands, forage

growth is more affected by rainfall than by temperature (Kelly et al., 2000;

Parton et al., 1993; Zilverberg et al., 2017). However, grazing land models

have difficulty simulating seasonal dynamics of forage production due to high

intra-annual distribution and variability of precipitation. For example,

Andales et al. (2006) found that the GPFARM-range model could not sim-

ulate the quick recovery of vegetation after a severe drought year and that

simulated variability among years was less than observed in terms of forage

production. Zilverberg et al. (2017) noted that the APEX model needed

improvement to accelerate forage growth for late season precipitation.

Similarly, Lee et al. (2012) found that spatial and temporal variation simulated

by the DayCent model was less than actual measured forage production of a

key species. Zilverberg et al. (2017) found the APEX model adequately sim-

ulated total plant biomass, but simulated forage production of individual

species was problematic. The inability to simulate seasonal variation could

also overestimate ranchers’ profit by 10–20% (Vogeler et al., 2016).
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Correct phenology simulation is essential for grazing land production

(Corson et al., 2007a; Cullen et al., 2008; Riedo et al., 1998), especially

when grasses have a short growth cycle (e.g., 4–6weeks) and can have

multiple growth cycles in a year when water is available (Kiniry et al.,

2017; Moore et al., 2015). Lee et al. (2012) found that DayCent simulated

higher forage biomass for systems with 2–3 harvests compared to a single

cutting per year, due to reduced growth-stage development. PaSim simu-

lated initiation of growth in autumn 25 days earlier, and maximum growth

rate 20 days earlier than the measured dates in Italy (Pulina et al., 2018).

Correct responses of phenology or growth stages to photoperiods, temper-

ature, defoliation, and water stresses need to be included in grazing land

models (Smith et al., 2017).

Competition among plant species in grazing lands is not well simulated

either. Most studies have focused on aboveground light interception and

evaporative demand (Confalonieri, 2014). Kim et al. (2016) used the

ALMANACmodel to simulate 10 grass species in rainout shelters and found

strong interaction between soil type and species in terms of plant height and

basal diameter. Simulations required different potential leaf area index when

grasses were grown independently or competitively, which could be due to

the inability of the model to simulate plant responses to soil nutrient and

water status. Under low irrigation, the model over-estimated effects of water

stress when species were simulated independently; whereas, the model per-

formed better when all species grew competitively together, since the model

was calibrated under competitive growth.

Forage quality is generally measured by N (or crude protein) concentra-

tion in biomass, digestibility, and metabolizable energy content. However,

most models have difficulty simulating dynamics of plantN uptake. For exam-

ple, Riedo et al. (1998) found PaSim underestimated N concentration in

harvested biomass. Corson et al. (2007a,b) found that IFSM-SPUR simulated

more N uptake in the spring, which depleted soil N in the summer months.

Nitrogen uptake is also affected by soil clay content (Lee et al., 2012), soil

C mineralization (Berntsen et al., 2005; Meyer et al., 2015), and competition

among species (Vogeler et al., 2017a). Variability of dung and urine distribution

influences plant N uptake (Hutchings et al., 2007).

2.4 Animal production
Unlike croplands where crop yield is the final product, grazing land models

need to simulate both the primary (forage biomass) and secondary
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production (animal weight gains) correctly. When there is simulation error

in plant biomass but reasonable simulation of animal gain, the model is com-

pensating for plant biomass error by adjusting animal parameters (Stout et al.,

1990). Grazing land models also have difficulty simulating animal weight

gain after animals were switched to pasture from hay due to lack of responses

to rumen microorganisms and palatability (Stout et al., 1990). In addition,

models may consider genetic variation and genetic-management interactions

when simulating animal weight gain and milk production (Washburn and

Mullen, 2014). For example, using the IFSM model, Rojas-Downing et al.

(2017) found higher milk productivity in confinement systems, followed

by the seasonal pasture grazing systems and the annual pasture grazing system.

Soder and Rotz (2003) used the DAFOSYM, a precursor of IFSM, to study

the economic and environmental impact of grazing on dairy farms, and found

that grazing animals produced less milk compared to animals receiving

harvested feed, but grazing reduced economic risk.

Stocking rate is one of the key decisions facing land managers. For exam-

ple, Beukes et al. (2008) used the DairyNZ WFM to study the efficiency of

feed utilization andmilk production under five annual stocking rates (between

2.2 and 4.3 cows ha�1 Yr�1). Results showed acceptable prediction of pasture

production, animal intake, body weight, and milk production, but it over

predicted milk solids by 31%, which was consistent across years and herds.

The over-prediction of milk solids indicated that the model was too efficient

in converting nutrients to milk, which could be caused by the model’s insuf-

ficient response to nutrition, insufficient accounting of energy expenditure,

and failure to account for low forage quality in the summer. Increasing lignin

content of forage did decrease milk solids, but also decreased body weight.

Analyses of stocking rate effects can employ metrics other than the produc-

tion of forage andmeat or milk. In a study using SAVANNA,Christensen et al.

(2003) simulated the impacts of 14 different stocking rates on vegetation

resilience and recovery in Inner Mongolia, China. They found a grazing inten-

sity of 0.49 (biomass in grazed area/biomass in ungrazed area) resulted in max-

imum system resilience. A grazing intensity above 0.49 (i.e., 39 animal units

year�1 km2) was predicted to cause an increase in shrub primary production

and root biomass as well as permanent damage even without further grazing.

2.5 Natural resources and production tradeoffs
2.5.1 Soil C sequestration
Soil C sequestration could offset 20–35% of global greenhouse gas (GHG)

emissions, and maximizing acreage and soil C storage of grazing lands is the
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most effective management strategy (Minasny et al., 2017). Carbon

sequestration in grazing lands is influenced by primary production, grazing

intensity, root dynamics, and soil organic C (SOC) decomposition

(Kirschbaum et al., 2015, 2017). Depending on sampling method and

other management, conflicting results for soil C sequestration may be

obtained (Kirschbaum et al., 2017; Mudge et al., 2011). When C flux

was measured in an open field, it was also important to filter out CO2 fluxes

from grazing animals near the eddy-covariance measurement towers

(Kirschbaum et al., 2015).

The CENTURY model was the first designed to simulate plant biomass,

soil C and soil N in the North America Great Plains (Parton et al., 1987) and

was then incorporated into several other grazing land models (e.g., IFSM,

APEX, SAVANNA, PaSim) for better simulation of soil C and N processes.

Parton et al. (1987) established that precipitation, soil texture, temperature,

and plant lignin content were the controlling factors for aboveground biomass

production and soil organic matter (SOM) in the Great Plains. They also noted

that steady states of SOM were affected by soil texture as well as grazing inten-

sity. Reducing grazing intensity would effectively restore degraded grasslands,

especially under predicted climate change conditions (Chang et al., 2015). In a

recent study with GPFARM-Range, Qi et al. (2012) found that grazing had

little effect on soil total C and N over 14 years in the semi-arid Great Plains.

Long-term data and frequent samplings are needed for better evaluation of soil

C and N, as well as root growth.

Converting croplands to grasslands generally increases SOC storage. Using

the APSIM-Pasture model, Liu et al. (2016) simulated >0.3TCha�1 year�1

increase in SOC with zero or low stocking rate in eastern Australia. Even a

four-year pasture rotation would significantly reduce SOC decline in crop-

lands. However, grazing would slow C sequestration in soils due to greater

removal of forage. Haney et al. (2010) showed higher SOC and higher water

extractable C under grass than under corn production, but they also noticed

differences in soil C sequestration among different grass species. Simulated

total soil C sequestration is higher when spatial heterogeneity is included

(Hutchings et al., 2007).

Simulated soil C storage change varies greatly among models. For exam-

ple, Veltman et al. (2017) found that soil C change ranged from �0.70

(APEX) to 0.64TCha�1 year�1 (DNDC) for a 9-year period; whereas, IFSM

and DayCent predicted negligible soil C changes. Such a high discrepancy

amongmodels could be due to inconsistent allocation of initial soil C across

different pools in the models (Veltman et al., 2017).
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2.5.2 Greenhouse gas (GHG) emission
Enteric methane (CH4) emissions from ruminants, nitrous oxide (N2O)

emissions from the soil, and changes in the soil C stock are generally

the major terms in the GHG balance of grazing lands. Simultaneous,

long-term field measurements of all three of these fluxes are mostly con-

ducted (Valbuena-Parralejo et al., 2019) over relatively small areas, but

GHG budgets need to be evaluated at the farm or ranch scale (Del Prado

et al., 2013). Modeling analyses are therefore essential to evaluating GHG

balances and mitigation options. Most of the development effort in recent

years has improved themodeling ofN2O fluxes, despite the far greater impor-

tance of enteric CH4 to the global GHG balance (Herrero et al., 2013).

DayCent is the most common model used to simulate GHG emission in

grazing lands worldwide. However, the goodness of its predictions may vary

greatly due to uncertainty in input parameters. The inherent small-scale

variability in N2O fluxes, and hence the large uncertainty at the field scale

predicted by models, suggests that N2O emissions predictions are difficult to

conduct at larger scales. For example, in a New Zealand study, Stehfest and

Muller (2004) found that DayCent overestimated annual N2O fluxes by

>300% on a urine-affected pasture due to overestimation of both the

fraction of N2O formation during nitrification and soil water content. In

general, DayCent simulates N2O emissions better for croplands than for

grazing lands (Fitton et al., 2014; Ryals et al., 2015), and simulates much

lower GHG emissions than that estimated by the IPCC method (Nichols

et al., 2018).

FASSET is another model used for GHG emissions in grazing lands,

especially for intensively managed grasslands. Hutchings et al. (2007) simu-

lated GHG emissions under fertilized pastureland and found that heteroge-

neity due to uneven distribution of dung and urine caused differences in

simulation results, depending on fertilizer rate. FASSET simulated less

GHG emissions when dung and urine were evenly distributed compared

to a patchy distribution. The localization of dung and urine saturated the soil

with N, which exceeded the N uptake capacity and inhibited soil microbial

activities for nitrification. In addition, FASSET simulated greater GHG

emissions with high clay soils, grazing (compared to cutting), and high tem-

perature conditions (Chatskikh et al., 2005). Soil compaction generally

increased N2O emissions, but this was not considered in the model

(Hutchings et al., 2007).

Both IFSM and DairyNZ have the capability to simulate whole farm

level GHG emissions. For example, using IFSM, Rotz et al. (2009) found
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that grazing animals produced less net emissions of GHG compared to con-

fined animals due to less manure storage but increased N leaching due to

urine deposited by grazing animals. Although GHG emissions per cow were

higher for a confinement dairy than for a grazing-based dairy, confinement

dairy farms had greater milk production per cow. As a result, the C footprint

was similar between the two dairy production systems (Belflower et al., 2012).

Under future climate, methane emissions frommanure storage and application

may increase by 18–54% and 26–120%, respectively (Thivierge et al., 2017), as
will enteric methane emissions (Del Prado et al., 2013). Based on IFSM sim-

ulation results, Powell and Rotz (2015) concluded that reducing dietary crude

protein could decrease N2O emissions by 15–43%without affecting milk pro-

duction, which agreed with Gregorini et al. (2016) who used the DairyNZ

WFM. GHG emissions were also highest when manure was deposited on

wet soil. For example, Van der Weerden et al. (2017) combined DairyNZ

WFM and APSIM to study optimum grazing duration when soil water con-

tent exceeded a certain threshold (i.e., >85% field capacity). They found that

13h day�1 grazingwas themost cost-effectivemanagement as GHGemissions

were reduced by 9% without significant increases in silage-feeding require-

ment. However, the duration-controlled grazing was not profitable unless

an off-paddock facility already existed (Laurenson et al., 2017). Otherwise,

applying a nitrification inhibitor may be more economical despite lower effi-

ciency in mitigating GHG emission and N leaching (Romera et al., 2017).

Considerable differences remain among models in their simulations of

GHG balances (Veltman et al., 2017).Moore et al. (2014) reviewed sixmodels

for GHG emissions (FullCAM, DayCent, DNDC, APSIM, WNMM, and

AgMod) and found that although themodels had similar underlying structures,

the representation of each individual sub-process is diverse and complex. They

also differ in model initialization, software implementation, distribution, and

software quality assurance. Uncertainty in the prediction of GHG emissions

among the models makes model-based decision-making difficult (Del

Prado et al., 2013; Moore et al., 2014). For example, Veltman et al. (2017)

found that simulated GHG emissions could vary by 3- to 50-fold among

IFSM, Manure-DNDC, and DayCent. In addition, Manure-DNDC simu-

lated a methane sink whereas IFSM and DayCent simulated a methane source

for the same dairy farm.

2.5.3 N leaching
Nitrogen leaching from urine and feces accounts for 70–90% of N leaching

in grazing lands (Vogeler and Cichota, 2016), but it is more of a concern in
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intensively managed pasturelands than in extensively managed rangelands

due to fertilizer application. Extensive studies have evaluated N leaching

from urine patches, including overlapping patches and uncertainty in soil

properties (Cichota et al., 2013; Vogeler et al., 2017b). For example,

Cichota et al. (2013), using the APSIM model, studied N leaching from

grazing systems in New Zealand and found that when urine was deposited

on the same location twice within 20 days, N in the two urine events should

be accumulated and treated as a single urine patch. However, when the

delay between the two urine events was>180days, independent patch sim-

ulation is sufficient for N leaching. In addition, soil heterogeneity greatly

affected simulated uncertainty of N leaching. Therefore, it is critical to have

correct input of soil physical properties when models are used for evaluating

environmental impacts on grazing land (Vogeler et al., 2017b).

Grazing land models can guide strategies to mitigate N leaching without

affecting ranchers’ profit. For example, Beukes et al. (2012) and Vogeler

et al. (2013) applied DairyNZ WFM (linked with APSIM) to develop

mitigation strategies of: (1) using cows with a lower replacement rate and

higher genetic capacity for longer lactation, (2) limiting N intake, (3)

stand-off pasture on a loafing pad, (4) reducing fertilizer rate, and (5) using

a nitrification inhibitor. The mitigation strategies not only increased milk

production by 8% (wet year) and 17% (dry year), but also decreased

N leaching by 20–55% (Vogeler et al., 2013). Grazing diverse pastures could

also reduce urine N excretions by 17–23% due to lower crude protein con-

tent based on a study with DairyNZ WFW in New Zealand (Beukes et al.,

2014). Nitrogen leaching could be reduced by 11–19% due to both less

N intake and large urine volumes from cows grazing diverse pasture, but

the decrease in forage yield compared to a standard pasture could affect

farmers economically. Further studies on rooting system of a diverse pasture

are needed because deeper-rooted species can extract more soil N from

deeper soil layers, further reducing N leaching.

3. Model application for prediction and decision
support

In addition to systems understanding, mechanistic models have the

capability to predict systems behavior under different conditions through

the integrated biophysical processes embedded in the models. Given the

empirical nature of the models, each must be calibrated to some extent

under certain assumptions before transferring to different soil, climate,
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and management conditions. To develop a model application for prediction

and decision support purposes, users need to: (1) select a model or models

based on objectives and decision support criteria; (2) determine the confi-

dence intervals for model acceptance; (3) calibrate the model(s) with

available experimental data; (4) extrapolate simulated results to other soils

and management conditions (short-term) and climate (long-term); and (5)

evaluate the short- and long-term predictions given the uncertainty in

model inputs and structure.

3.1 Model parameterization
Model selection is not an easy task for users (Thomas et al., 2013), but model

parameterization is even more difficult. In practice, most grazing land

models are parameterized by trail-and-error. Even for crop models, nearly

half of the users found best parameter values by trial-and-error within an

average of three iterations (Seidel et al., 2018). Optimization algorithms

have also been used in some cases, such as Monte-Carlo and Bayesian

approaches (Gottschalk et al., 2007; Sándor et al., 2016a; Touhami and

Bellocchi, 2015). Even among those who claim to divide the data between

calibration and validation, iteration is used to select parameters suitable for

both datasets (Seidel et al., 2018). Based on 211 returned surveys frommodel

users, Seidel et al. (2018) concluded that model calibration has been a major

obstacle in model application, such as what parameters to calibrate, which data

to use for calibration or validation, and how to estimate parameter uncertainty.

In general, model parameters could be more robust when multiple treat-

ments or multiple site-years of data are used for calibration (Di Vittorio et al.,

2010; Fensterseifer et al., 2017; Ma et al., 2015), especially when model

calibrations are completed under one set of conditions (Descheemaeker

et al., 2014a; Vuichard et al., 2007a). For example, in calibrating PaSim,

Ma et al. (2015) found that the parameters obtained by optimizing net eco-

system exchange, gross primary production, ecosystem respiration, and

evapotranspiration across 12 experimental sites in Europe provided the best

results compared to parameters obtained from selected sites. Touhami and

Bellocchi (2015) found that Bayesian calibration reduced parameter and

simulation uncertainty of PaSim, though it may not be effective because

of the complexity of the model. Simulation error in one process may affect

results of associated processes. Therefore, a poorly represented process in

a model could potentially propagate throughout the whole system and

make the users suspect other processes are incorrect (Sándor et al., 2016a).
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Interactions amongmodel parameters were also an issue in model calibration

(Ma et al., 2015). When a model is not adequately calibrated with a dataset,

users should look for better modules to improve certain processes, rather

than using unrealistic model parameters to match experimental observations

(Foy et al., 1999).

For some model inputs, such as weather data and soil properties, there is

considerable temporal and spatial variability in measurements. Sensitivity

analysis has been frequently used to identify which parameters to calibrate

(Touhami et al., 2013). Since all experiments are conducted at specific sites

and the models are more-or-less empirical in describing some processes,

there is an interaction between calibrated parameters and sites (Behrman

et al., 2014). As a result, recalibration of a model for different sites is needed,

given the correlation among soil and plant parameters and uncertainty in

model parameterization (Behrman et al., 2014; Foy et al., 1999; Teague

and Foy, 2002, 2004). A database of model parameters might be needed

for different locations. Another issue for grazing lands is model initialization

for grass establishment and soil C pools with a spin-up run (Calanca et al.,

2007; Chang et al., 2013; Kiniry et al., 2002; Parton et al., 1993).

3.2 Short-term prediction for alternative management
After a model is calibrated, it can be used as a tool to evaluate provision of

multiple ecosystem services under various management practices. For

example, Andales et al. (2006) found that GPFARM-range could be used

as a tactical tool since forage production was adequately predicted based on

soil water content onMay 1 and forecasted weather after May 1. Fang et al.

(2014a) improved the GPFARM-range model for forage intake, forage

quality, and forage use efficiency to study stocking rate effects on forage

and steer production at the High Plains Grasslands Research Station in

Wyoming from 1982 to 2012. Sensitivity analyses showed that the

responses of steer weight gain and peak biomass to stocking rate depend

on rainfall (wet or dry year) with optimum stocking rate of 0.88 steers

ha�1 yr�1 for dry and normal seasons and up to 1.10 steers ha�1 yr�1

for wet years. When considering cost, the economically feasible stocking

rate was 0.33 steers ha�1 yr�1 for dry years to 0.44 steers ha�1 yr�1 for wet

years. A similar decision tool was developed by Fang et al. (2014b) for

different soils and stocking rates. A set of regression equations were pro-

posed to predict peak biomass and steer weight gain under various stocking

rates, soil and weather conditions.
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In addition to stocking rate, the grazing window is also important, as

ranchers try to narrow grazing gaps to reduce purchased feed. For example,

using the GRAZPLANmodel and 60 years of weather data, Descheemaeker

et al. (2014a) found that, on highly productive soils, introducing

summer-growing perennials would have high grazing potential, ranging

from 31 to 156 and 67 to 193 days under light and heavy grazing conditions,

respectively, during the summer-autumn feed gaps. The potential grazing

days would be under 67 days for low productivity soils.

Grazing land models can also be used to evaluate system resilience under

alternative management. For example, in an East Africa study, Metzger et al.

(2005) used the SAVANNA model to study two rangelands, one with only

wet season grazing and the other with both wet and dry season grazing. They

found that both rangelands were resilient to grazing in terms of species diversity.

However, the abundance of forbs, shrubs, and bare land were positively cor-

related to grazing intensity during dry seasons when forage had lower quality

and animals gathered close to water sources rather than searching for high

quality forage.

Ranchers or farmers are unlikely to use a complex model in their daily

decision-making (Kalaugher et al., 2013; Romera et al., 2013). One way

around this barrier is to restrict the model to a small part of its parameter

space by means of a user interface, thus simplifying the effort required to

provide inputs. The GrassCheck system, based on the model of Barrett

et al. (2005), is currently being used to extend results from Northern Ireland

to the rest of the United Kingdom; AskBill (Kahn et al., 2017), which is

based on a simplified version of Ecomod, is a newer example. An alternative

approach is to build a more flexible simulation tool that is used by advisors to

make probabilistic forecasts of system dynamics (e.g., GrassGro; Salmon and

Donnelly, 2008). Implementation of model-based decisions also depends on

the type of livestock production systems and social factors. For example,

based on the SAVANNAmodel, Boone et al. (2004) found that the decision

of destocking herds based on forecasted drought was adopted by 44% of the

commercial farmers, but only 3% of communal farmers, even though a

wrong decision on destocking would promote more and better forage for

the remaining herds.

3.3 Long-term prediction and adaptation to climate change
Long-term simulations of grazing land models are essential to understand

and forecast the direct and indirect effects of climate change on vegetation
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and whole system productivity (Kipling et al., 2016b). One common appli-

cation of grazing land models is to explore the impacts of climate change

and adaptation options for crop-livestock farms. Simulation results show that

year-to-year variability poses significant risk for ranchers’ revenues and

that alleviation of dry-season feed gaps is critical for climate adaptation, espe-

cially under high stocking density (Descheemaeker et al., 2018). For example,

using a combined APSIM-GRAZPLAN model in the AusFarm platform,

Ghahramani and Moore (2016) evaluated the sustainability of current crop-

livestock farming systems in Western Australia under climate change condi-

tions projected for year 2030. They predicted a decline in above ground net

primary production (ANPP) and ground cover, especially for crops. CO2

fertilizationwas offset by higher temperatures and evapotranspiration demand,

especially in drier areas. GHG emissions were predicted to decline, but soil

erosion would increase due to less ground cover. They also predicted that

no current management systems would be as profitable as now in 2030, espe-

cially in drier regions, unless a higher percentage of land was allocated to

livestock production. In addition, livestock production was less affected by

climate change than cropping systems due to prevailing low stocking rates,

which suggests that ranchers may increase livestock production for adaptation

to climate change (Ghahramani and Moore, 2016; Rodriguez et al., 2014).

Other adaptation strategies evaluated by grazing land models are high

irrigation, high fertilization, new vegetation species, improved animal

genetic traits, and flexible stocking rates. In general, irrigation and fertilization

could mitigate climate change (Ghahramani and Moore, 2013; Graux et al.,

2013; Kalaugher et al., 2017; Rodriguez et al., 2014). Using GRAZPLAN,

Moore and Ghahramani (2014) evaluated the effects of livestock genetic

improvement on mitigating climate change effects. They found that breeding

for greater fleece growth in sheep enterprises and for larger body size in cow

and steer enterprises were the most effective genetic adaptations. Higher con-

ception rates and improved tolerance to heat stress had less adaptation benefit.

Simulated mitigation and adaptation strategies varied with management

systems and projected weather conditions. For example, due to the current

low stocking rate in Australia, Ghahramani and Moore (2016) recommended

increasing stocking rates as climate changes, whereas Kalaugher et al. (2017)

proposed decreasing stocking rates in New Zealand for 2030–2050 given the

current high stocking rates. Using GRAZPLAN in southern Australia,

Ghahramani and Moore (2013) simulated effective mitigation practices

by increasing soil fertility and adding a legume (Lucerne) to the feed-base.

However, these adaptations would not be effective after 2030, except under
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high rainfall regions. In addition, as climate change may increase the uncer-

tainty of vegetation production, ranchers need to adjust accordingly. For

instance, the uncertainty of summer forage production would increase in

France because summer drought would become more frequent (Graux

et al., 2013). However, spring and winter forage production were expected

to increase. Such a projection may orient changes in feeding practices, such

as offering more summer feeding. Most recently, Sándor et al. (2018b) used

grassland models to develop mitigation strategies for GHG emissions at five

grassland sites worldwide and claimed that a multi-model approach improved

understanding of GHG flux dynamics in pasturelands.

4. Multi-location and multi-model comparison

Model predictions vary considerably across locations due to differ-

ences in plant-animal-environment interactions. Likewise, simulation

results obtained from multiple models for the same dataset vary greatly

due to differing approaches and underlying model assumptions. One of

the most extensive comparison across locations using a single model was

conducted with PaSim in Europe. Gottschalk et al. (2007) studied the

uncertainty of PaSim in simulating net ecosystem exchange at four sites

in France, Switzerland, Ireland, and Scotland. Uncertainty in model input

was estimated using Latin hypercube sampling from probability density

functions of each parameter, including radiation, temperature, precipitation,

atmospheric CO2 concentration, soil properties (bulk density, clay fraction,

pH, SOC), and N management practices. There was no consistent order in

sensitivity among the input variables in net ecosystem exchange prediction

across sites because model performance depended on both measurement

and simulation uncertainties. In general, uncertainty was greater under drier

climate conditions. Calanca et al. (2007) used PaSim to analyze gross primary

production, ecosystem respiration, and net ecosystem exchange for five sites

in Hungary, Scotland, Ireland, France, and Switzerland. There was much

variation when outputs were estimated on a daily basis, but the model per-

formed better on a yearly basis. NPPwas closely related to precipitation. The

model overestimated N2O fluxes by two- to sevenfold, underestimated peak

emissions of N2O, and poorly predicted the timing of the peaks. Later, Ma

et al. (2015) extended PaSim to 12 observational sites across Europe and

found that gross primary production was better simulated than ecosystem

respiration. Across years and locations, the model simulated average years

better than dry years with extreme events. Recent improvements in plant
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acclimation to temperature may help PaSim photosynthesis and respiration

modules respond better to temperature extremes (Sándor et al., 2018a).

At present, model comparison is limited to whole models, not underly-

ing biophysical processes or modules. As a result, differences among model

applications cannot be attributed to individual processes. The use of multiple

models and model ensembles is recommended (Sándor et al., 2018b). For

example, Sándor et al. (2016a) compared two models (PaSim and Biome-

BGC MuSo) using five eddy covariance sites in Germany, France, Italy,

and Switzerland. Model performance was marginal to acceptable for weekly

aggregated results in terms of evapotranspiration, soil water content, soil

temperature, and C and water fluxes. Overall, simulation of net ecosystem

exchange showed less accuracy with Biome-BBGC than with PaSim. How-

ever, C use efficiency was either overestimated by PaSim or underestimated

by BBGC MuSo at all locations and at all temporal scales.

In a follow-up study, Sándor et al. (2017) applied nine models at nine

sites across Europe and Israel for simulations of soil temperature, soil water,

and aboveground biomass. All models simulated soil temperature well, but

soil water content and plant biomass were not always well simulated. In gen-

eral, there were greater variability among models than within models. Poor

biomass simulation was attributed to poor representation of phenology, lack

of differentiation among plant functional types, over simplification of bio-

physical processes, and incorrect responses to the environment. Ehrhardt

et al. (2018) compared 12 models (or model versions) for ANPP simulation

with data from France, New Zealand, UK and USA and found that the

ensemble results of ANPP were improved with more data used for model

calibration, but less for N2O emissions. None of the models was able to sim-

ulate both ANPP and N2O emissions satisfactorily at all sites. The authors

attributed the discrepancy among model simulation results to differences

in model structure, inability to simulate spatial variability, methods of model

calibration, and users’ experiences.

5. Next frontiers

5.1 Identified knowledge gaps
We identified several knowledge gaps that could improve the simulation

of ecosystem processes (Table 3). First, improvements on forage produc-

tion simulation are needed (Ehrhardt et al., 2018). Simulations of root

dynamics, root carbon storage for regrowth, and rooting depth need to

be improved due to the importance of roots in water and nutrient uptake
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(Descheemaeker et al., 2014b; Qi et al., 2012; Robertson et al., 2015;

White and Snow, 2012; Zilverberg et al., 2017). Considerable errors

may exist with field measurement of root biomass and in differentiating

live and dead root biomass (Milchunas, 2009). Grass phenology is simu-

lated less satisfactorily than for crops and needs to be improved, especially

when grass nutritive characteristics are growth stage related (Pembleton

et al., 2013). To better simulate forage quality or crude protein content,

season-specific critical N curves and translocation of N within pasture

canopy needs to be improved (Pembleton et al., 2013; Vogeler and Cichota,

2016). Nitrogen fixation in grazing lands can be important and should be inves-

tigated further, especially under changing climate conditions (Li et al., 2014).

Plant diversity or invasion under climate change or alternative management

is also generally poorly simulated (Li et al., 2014). A related issue is the poor

understanding and simulation of soil N supply from decomposition of

SOM (Robertson et al., 2015). Plant responses to extreme events are also a

major concern of farmers and ranchers, but are not well simulated in current

models (Kalaugher et al., 2017; Li et al., 2015; Robertson et al., 2015). Recent

collaborations between experimentalists and modelers on improving plant

responses (e.g., root/shoot ratio, leaf expansion, photosynthesis, phenology,

species composition) to the intensity and duration of high temperature and

extreme droughts have shown promise (Gellesch et al., 2017; Sándor et al.,

2018a; Wang et al., 2018; Webber et al., 2017).

Second, the ability to simulate spatial and temporal variability in pasture

production and animal grazing is essential for model application in grazing

land management. Spatial heterogeneity due to soil topography, soil texture,

and grazing intensity affects simulation of N leaching (Cichota et al., 2013;

Hutchings et al., 2007), biomass production (Guo et al., 2016, 2018; Lee

et al., 2012; Sándor et al., 2018a), plant diversity (Confalonieri, 2014;

Guo et al., 2016, 2018; Moulin et al., 2018; Movedi et al., 2019; van

Oijen et al., 2018), GHG emissions (Del Prado et al., 2013), and economic

return (Vogeler et al., 2016). However, the effects of soil heterogeneity on

plant production depend on rainfall regime and spatial scale, and is manifest

more under arid and semi-arid conditions (Guo et al., 2018). Most manage-

ment scenarios in grazing lands involve changes in how livestock are moved

in space and time by managers in response to spatiotemporal variability in

forage resources and plant regrowth. One potentially significant innovation

is a linking between agent-based models that simulate individual animal

behavior in a spatiotemporal rangeland and process-based grazing land

models that simulate forage dynamics to capture the grazing efficiency
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and design of realistic adaptive management practices (Fust and Schlecht,

2018). As stated by Fust and Schlecht (2018), “modeling approaches to com-

bine vegetation characteristics with animal behavior and movement and met-

abolic productivity in a spatially-explicit manner to incorporate important

dryland aspects such as spatial heterogeneity are missing so far.” As climate

changemay cause even greater temporal and spatial variability of grazing lands,

agent-based grazing landmodels are critical to the next frontier of grazing land

management.

Third, evaluation of models with well-designed experimental data is

essential for identifying knowledge gaps and the best process-based modules

(Derner et al., 2012). The uncertainty of model input parameters, such as soil

properties, needs to be addressed and included in modeling results

(Hutchings et al., 2007; Vogeler et al., 2017b). Experiments that quantify

spatial heterogeneity in soil properties and associated variation in plant

community composition, biomass production, and phenology, along with

measures of livestock movement in space and time will be essential for

parameterizing spatial models. Integration of real-time monitoring data

on crops and soils into modeling should be explored and utilized for timely

decision-making (Edirisinghe et al., 2012; Robertson et al., 2015). Models

must also be flexible in design (i.e., modularization) for ease of incorporating

new experimental knowledge and management experience and skills. New

approaches for integrating spatial and temporal experimental or monitoring

data, social and economic metrics, and manager’s knowledge and perspec-

tives are needed to bring grazing land modeling to the next level (Derner

et al., 2012, 2018; Peters et al., 2018). Artificial intelligence self-learning

and self-training of system models with big data (including remotely sensed

data) should be a goal for developing the next generation of decision support

tools (Getz et al., 2018).

5.2 Improving model adoption
Since each grazing land is unique, grazing land models may need to be

calibrated for specific landscapes with available weather, soil, and plant data.

As simulation errors of biophysical models are common, expert opinion of

local producers may be an added dimension in decision-making (An, 2012;

Kalaugher et al., 2013; Wilmer et al., 2018). The two main goals of developing

models are to understand biological and environmental interactions among

system processes and to use simulation results as metrics for decision-making

(Holzworth et al., 2014; Kipling et al., 2016a).
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Co-learning experiences between scientists and farmers or ranchers can

create useful decision tools (Holzworth et al., 2014; Miller et al., 2017;

Rodriguez et al., 2014; Wilmer et al., 2018), which helps develop tailored

options related to individual farms and minimize risk (Descheemaeker et al.,

2016). Complex and mechanistic models are useful to improve our under-

standing of grazing land ecosystems, but the ultimate goal of modeling may

also be tomeet the demands of policymakers and stakeholders, who aremore

interested in large scale and novel changes, rather than scientific findings of

many mechanistic models (Kipling et al., 2016a). Simulated processes

unsupported by data may lead to over-parameterization across locations

(Getz et al., 2018).

Normalization of data and models will help modelers reach a higher

plateau with globally available tools and computation abilities (Ginaldi

et al., 2016; Porter et al., 2014), such as the Google Earth Engine for sharing

data (Holzworth et al., 2014).When amodel improvement is needed, a large

test dataset should be used to evaluate the changes under a wide range of soil,

climate, plant, and management conditions (Holzworth et al., 2014). Smart

farming requires farm-specific models that can reflect near real-time events

and use real-time data (O’Grady and O’Hare, 2017). Although empirical

models are site specific, they may be practical as they need no calibration

on the user’s end and provide the same accuracy as mechanistic models in

some cases, especially when there is uncertainty in input parameters

(Araujo et al., 2012).

6. Conclusion

Based on a literature search of 12 models to simulate dynamics of

grazing lands, most applications are at the field scale, with a few on the farm

or ranch level. The models evaluate alternative management practices on

vegetation and animal production as well as environmental impacts under

current and projected climate conditions. Several knowledge gaps are iden-

tified to improve forage and animal simulation, including plant phenology,

root growth, forage quality, and animal grazing efficiency. In addition, our

review suggests three areas of improvements to increase model adoption as

decision support tools. One, grazing land models need to be user-friendly by

utilizing available big data. This would minimize model parameterization so

that multiple models can be applied, reducing simulation uncertainty. Two,

efforts are needed to reduce the inconsistency among grazing land models in

simulated ecosystem services and grazing management effects by carefully
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examining the underlying biophysical processes and their interactions in

each model. Three, co-learning experiences among modelers, experimen-

talists, and stakeholders need to be strengthened by co-developing modeling

objectives, approaches, and interpretation of simulation results.
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Sándor, R., Barcza, Z., Hidy, D., Lellei-Kovács, E., Ma, S., Bellocchi, G., 2016a. Modelling
of grassland fluxes in Europe: evaluation of two biogeochemical models. Agr. Ecosyst.
Environ. 215, 1–19.

212 Liwang Ma et al.



Sándor, R., Barcza, Z., Acutis, M., Doro, L., Hidy, D., K€ochy, M., Minet, J., Lellei-Kovács,
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